
CSH (1) UNIX Reference Manual CSH (1)

NAME
csh − a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [−bcefinstvVxX] [arg ...]
csh [−l]

DESCRIPTION
The csh is a command language interpreter incorporating a history mechanism (seeHistory
Substitutions), job control facilities (seeJobs), interactive file name and user name completion (see
File Name Completion), and a C-like syntax. It is used both as an interactive login shell and a shell
script command processor.

Ar gument list processing
If the first argument (argument 0) to the shell is ‘−’, then this is a login shell.A login shell also can be spec-
ified by invoking the shell with the ‘−l ’ fl ag as the only argument.

The rest of the flag arguments are interpreted as follows:

−b This flag forces a ‘‘break’’ f rom option processing, causing any further shell arguments to be treated
as non-option arguments. Theremaining arguments will not be interpreted as shell options.This
may be used to pass options to a shell script without confusion or possible subterfuge.The shell will
not run a set-user ID script without this option.

−c Commands are read from the (single) following argument which must be present.Any remaining ar-
guments are placed inargv .

−e The shell exits if any inv oked command terminates abnormally or yields a non-zero exit status.

−f The shell will start faster, because it will neither search for nor execute commands from the file
.cshrc in the invoker’s home directory.

−i The shell is interactive and prompts for its top-level input, even if i t appears not to be a terminal.
Shells are interactive without this option if their inputs and outputs are terminals.

−l The shell is a login shell (only applicable if−l is the only flag specified).

−n Commands are parsed, but not executed. Thisaids in syntactic checking of shell scripts.

−s Command input is taken from the standard input.

−t A single line of input is read and executed. A‘ \ ’ may be used to escape the newline at the end of
this line and continue onto another line.

−v Causes theverbose variable to be set, with the effect that command input is echoed after history
substitution.

−x Causes theecho variable to be set, so that commands are echoed immediately before execution.

−V Causes theverbose variable to be set even before.cshrc is executed.

−X Is to −x as −V is to −v .

After processing of flag arguments, if arguments remain but none of the−c , −i , −s , or −t options were
given, the first argument is taken as the name of a file of commands to be executed. Theshell opens this file,
and saves its name for possible resubstitution by ‘$0’.Since many systems use either the standard version 6
or version 7 shells whose shell scripts are not compatible with this shell, the shell will execute such a ‘stan-
dard’ shell if the first character of a script is not a ‘#’, i.e., if the script does not start with a comment.Re-

4th Berkeley Distribution January21, 1994 1

CSH (1) UNIX Reference Manual CSH (1)

maining arguments initialize the variableargv .

An instance ofcsh begins by executing commands from the file/etc/csh.cshrc and, if this is a login
shell, /etc/csh.login . It then executes commands from.cshrc in thehome directory of the invoker,
and, if this is a login shell, the file.login in the same location.It is typical for users on crt’s to put the
command ‘‘stty crt’’ i n their .login file, and to also invoke tset (1) there.

In the normal case, the shell will begin reading commands from the terminal, prompting with ‘% ’.Process-
ing of arguments and the use of the shell to process files containing command scripts will be described later.

The shell repeatedly performs the following actions: a line of command input is read and broken into
words . This sequence of words is placed on the command history list and parsed.Finally each command in
the current line is executed.

When a login shell terminates it executes commands from the files.logout in the user’s home directory
and/etc/csh.logout .

Lexical structure
The shell splits input lines into words at blanks and tabs with the following exceptions. Thecharacters ‘&’
‘|’ ‘;’ ‘<’ ‘>’ ‘(’ ‘)’ form separate w ords. Ifdoubled in ‘&&’, ‘||’, ‘<<’ or ‘>>’ these pairs form single words.
These parser metacharacters may be made part of other words, or prevented their special meaning, by pre-
ceding them with ‘\’.A newline preceded by a ‘\’ is equivalent to a blank.

Strings enclosed in matched pairs of quotations, ‘’’, ‘`’ or ‘"’, form parts of a word; metacharacters in these
strings, including blanks and tabs, do not form separate words. Thesequotations have semantics to be de-
scribed later. Within pairs of ‘´’ or ‘"’ characters, a newline preceded by a ‘\’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment that continues to the end of
the input line. It is prevented this special meaning when preceded by ‘\’ and in quotations using ‘`’, ‘´’, and
‘"’.

Commands
A simple command is a sequence of words, the first of which specifies the command to be executed. Asim-
ple command or a sequence of simple commands separated by ‘|’ characters forms a pipeline.The output of
each command in a pipeline is connected to the input of the next. Sequencesof pipelines may be separated
by ‘;’, and are then executed sequentially. A sequence of pipelines may be executed without immediately
waiting for it to terminate by following it with an ‘&’.

Any of the above may be placed in ‘(’ ‘)’ to form a simple command (that may be a component of a pipeline,
etc.). Itis also possible to separate pipelines with ‘||’ or ‘&&’ showing, as in the C language, that the second
is to be executed only if the first fails or succeeds respectively. (SeeExpressions.)

Jobs
The shell associates ajob with each pipeline.It keeps a table of current jobs, printed by thejobs com-
mand, and assigns them small integer numbers.When a job is started asynchronously with ‘&’, the shell
prints a line that looks like:

[1] 1234

showing that the job which was started asynchronously was job number 1 and had one (top-level) process,
whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ˆZ (control-Z) which sends a
STOP signal to the current job. The shell will then normally show that the job has been ‘Stopped’, and print
another prompt.You can then manipulate the state of this job, putting it in thebackground with thebg com-
mand, or run some other commands and eventually bring the job back into the foreground with the
foreground commandfg . A ˆZ takes effect immediately and is like an interrupt in that pending output and

4th Berkeley Distribution January21, 1994 2

CSH (1) UNIX Reference Manual CSH (1)

unread input are discarded when it is typed.There is another special key ˆY that does not generate a STOP
signal until a program attempts toread (2) it. This request can usefully be typed ahead when you have pre-
pared some commands for a job that you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal.Background jobs are nor-
mally allowed to produce output, but this can be disabled by giving the command ‘‘stty tostop’’. If you set
this tty option, then background jobs will stop when they try to produce output like they do when they try to
read input.

There are several ways to refer to jobs in the shell.The character ‘%’ introduces a job name.If you wish to
refer to job number 1, you can name it as ‘%1’.Just naming a job brings it to the foreground; thus ‘%1’ is a
synonym for ‘fg %1’, bringing job number 1 back into the foreground. Similarlysaying ‘%1 &’ resumes job
number 1 in the background.Jobs can also be named by prefixes of the string typed in to start them, if these
prefixes are unambiguous, thus ‘%ex’ would normally restart a suspendedex (1) job, if there were only one
suspended job whose name began with the string ‘ex’. It is also possible to say ‘%?string’ which specifies a
job whose text containsstring , if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output about jobs, the current job is marked
with a ‘+’ and the previous job with a ‘−’. The abbreviation ‘%+’ refers to the current job and ‘%−’ refers to
the previous job. For close analogy with the syntax of thehistory mechanism (described below), ‘%%’ is
also a synonym for the current job.

The job control mechanism requires that thestty (1) optionnew be set. It is an artifact from anew imple-
mentation of the tty driver that allows generation of interrupt characters from the keyboard to tell jobs to
stop. Seestty(1) for details on setting options in the new tty driver.

Status reporting
This shell learns immediately whenever a process changes state.It normally informs you whenever a job be-
comes blocked so that no further progress is possible, but only just before it prints a prompt.This is done so
that it does not otherwise disturb your work. If, however, you set the shell variablenotify , the shell will
notify you immediately of changes of status in background jobs.There is also a shell commandnotify
that marks a single process so that its status changes will be immediately reported.By default notify
marks the current process; simply say ‘notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘You have stopped jobs.’
You may use thejobs command to see what they are. If you do this or immediately try to exit again, the
shell will not warn you a second time, and the suspended jobs will be terminated.

File Name Completion
When the file name completion feature is enabled by setting the shell variablefilec (seeset), csh will
interactively complete file names and user names from unique prefixes, when they are input from the termi-
nal followed by the escape character (the escape key, or control-[) For example, if the current directory looks
like

DSC.OLD bin cmd lib xmpl.c
DSC.NEW chaosnet cmtest mail xmpl.o
bench class dev mbox xmpl.out

and the input is

% vi c h<escape>

csh will complete the prefix ‘‘ch’’ to the only matching file name ‘‘chaosnet’’, changing the input line to

% vi c haosnet

4th Berkeley Distribution January21, 1994 3

CSH (1) UNIX Reference Manual CSH (1)

However, giv en

% vi D <escape>

csh will only expand the input to

% vi D SC.

and will sound the terminal bell to indicate that the expansion is incomplete, since there are two file names
matching the prefix ‘‘D’ ’.

If a partial file name is followed by the end-of-file character (usually control-D), then, instead of completing
the name,csh will list all file names matching the prefix.For example, the input

% vi D <control-D>

causes all files beginning with ‘‘D’ ’ to be listed:

DSC.NEW DSC.OLD

while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial user names, if the word to be
completed (or listed) begins with the character ‘‘˜’ ’. For example, typing

cd ˜ro<escape>

may produce the expansion

cd ˜root

The use of the terminal bell to signal errors or multiple matches can be inhibited by setting the variable
nobeep .

Normally, all files in the particular directory are candidates for name completion.Files with certain suffixes
can be excluded from consideration by setting the variablefignore to the list of suffixes to be ignored.
Thus, iffignore is set by the command

% set fignore = (.o .out)

then typing

% vi x <escape>

would result in the completion to

% vi x mpl.c

ignoring the files "xmpl.o" and "xmpl.out".However, if the only completion possible requires not ignoring
these suffixes, then they are not ignored.In addition,fignore does not affect the listing of file names by
control-D. All files are listed regardless of their suffixes.

Substitutions
We now describe the various transformations the shell performs on the input in the order in which they occur.

History substitutions
History substitutions place words from previous command input as portions of new commands, making it
easy to repeat commands, repeat arguments of a previous command in the current command, or fix spelling
mistakes in the previous command with little typing and a high degree of confidence.History substitutions
begin with the character ‘!’ and may begin anywhere in the input stream (with the proviso that they do
not nest.) This‘!’ may be preceded by a ‘\’ to prevent its special meaning; for convenience, an ‘!’ is passed
unchanged when it is followed by a blank, tab, newline, ‘=’ or ‘(’. (History substitutions also occur when an

4th Berkeley Distribution January21, 1994 4

CSH (1) UNIX Reference Manual CSH (1)

input line begins with ‘↑’. This special abbreviation will be described later.) Any input line that contains
history substitution is echoed on the terminal before it is executed as it could have been typed without history
substitution.

Commands input from the terminal that consist of one or more words are saved on the history list.The histo-
ry substitutions reintroduce sequences of words from these saved commands into the input stream.The size
of the history list is controlled by thehistory variable; the previous command is always retained, regard-
less of the value of the history variable. Commandsare numbered sequentially from 1.

For definiteness, consider the following output from thehistory command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff ∗write.c

The commands are shown with their event numbers.It is not usually necessary to use event numbers, but the
current event number can be made part of theprompt by placing an ‘!’ in the prompt string.

With the current event 13 we can refer to previous events by event number ‘!11’, relatively as in ‘!−2’ (refer-
ring to the same event), by a prefix of a command word as in ‘!d’ for event 12 or ‘!wri’ for event 9, or by a
string contained in a word in the command as in ‘!?mic?’ also referring to event 9. These forms, without fur-
ther change, simply reintroduce the words of the specified events, each separated by a single blank.As a
special case, ‘!!’ refers to the previous command; thus ‘!!’alone is aredo .

To select words from an event we can follow the event specification by a ‘:’ and a designator for the desired
words. Thewords of an input line are numbered from 0, the first (usually command) word being 0, the sec-
ond word (first argument) being 1, etc.The basic word designators are:

0 first (command) word
n n ’th argument
↑ first argument, i.e.,‘1’
$ last argument
% word matched by (immediately preceding) ?s? search
x−y range of words
−y abbreviates‘0−y´
∗ abbreviates ‘↑−$’, or nothing if only 1 word in event
x∗ abbreviates‘x−$´
x− like ‘x ∗´ but omitting word ‘$’

The ‘:’ separating the event specification from the word designator can be omitted if the argument selector
begins with a ‘↑’, ‘$’, ‘ ∗’ ‘ −’ or ‘%’. After the optional word designator can be placed a sequence of modi-
fiers, each preceded by a ‘:’.The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing ‘.xxx’ component, leaving the root name.
e Remove all but the extension ‘.xxx’ part.
s/l/r/

Substitutel for r
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change once on each word, prefixing the above, e.g., ‘g&’.
a Apply the change as many times as possible on a single word, prefixing the above. It can be

used together with ‘g’ to apply a substitution globally.

4th Berkeley Distribution January21, 1994 5

CSH (1) UNIX Reference Manual CSH (1)

p Print the new command line but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the change is applied only to the first modifiable word. With substitutions, it is an
error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but instead strings.
Any character may be used as the delimiter in place of ‘/’; a ‘\’ quotes the delimiter into thel andr strings.
The character ‘&’ in the right hand side is replaced by the text from the left. A ‘ \’ also quotes ‘&’. A null l
(‘//’) uses the previous string either from anl or from a contextual scan strings in ‘!?s \?’. The trailing de-
limiter in the substitution may be omitted if a newline follows immediately as may the trailing ‘?’ in a con-
textual scan.

A history reference may be given without an event specification, e.g., ‘!$’.Here, the reference is to the pre-
vious command unless a previous history reference occurred on the same line in which case this form repeats
the previous reference.Thus ‘!?foo?↑ !$’ gives the first and last arguments from the command matching
‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an input line is a
‘↑’. This is equivalent to ‘!:s↑’ providing a convenient shorthand for substitutions on the text of the previous
line. Thus‘↑lb↑lib’ fix es the spelling of ‘lib’ in the previous command.Finally, a history substitution may
be surrounded with ‘{’ and ‘}’ if necessary to insulate it from the characters that follow. Thus, after ‘ls −ld
˜paul’ we might do ‘!{l}a’ to do ‘ls −ld ˜paula’, while ‘!la’ would look for a command starting with ‘la’.

Quotations with ´ and "
The quotation of strings by ‘´’ and ‘"’ can be used to prevent all or some of the remaining substitutions.
Strings enclosed in ‘´’ are prevented any further interpretation.Strings enclosed in ‘"’ may be expanded as
described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case (seeCommand
Substitution below) does a ‘"’ quoted string yield parts of more than one word; ‘´’ quoted strings never do.

Alias substitution
The shell maintains a list of aliases that can be established, displayed and modified by thealias and
unalias commands. Aftera command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias.If it does, then the text that is the
alias for that command is reread with the history mechanism available as though that command were the pre-
vious input line.The resulting words replace the command and argument list. If no reference is made to the
history list, then the argument list is left unchanged.

Thus if the alias for ‘ls’ is ‘ls −l’ the command ‘ls /usr’ would map to ‘ls −l /usr’, the argument list here be-
ing undisturbed.Similarly if the alias for ‘lookup’ was ‘grep !↑ /etc/passwd’ then ‘lookup bill’ would map
to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing process begins
again on the reformed input line.Looping is prevented if the first word of the new text is the same as the old
by flagging it to prevent further aliasing.Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax.Thus, we can ‘alias print ´pr \!∗ |
lpr´’ to make a command thatpr ’s its arguments to the line printer.

Variable substitution
The shell maintains a set of variables, each of which has as value a list of zero or more words. Someof these
variables are set by the shell or referred to by it.For instance, theargv variable is an image of the shell’s
argument list, and words of this variable’s value are referred to in special ways.

4th Berkeley Distribution January21, 1994 6

CSH (1) UNIX Reference Manual CSH (1)

The values of variables may be displayed and changed by using theset and unset commands. Ofthe
variables referred to by the shell a number are toggles; the shell does not care what their value is, only
whether they are set or not.For instance, theverbose variable is a toggle that causes command input to be
echoed. Thesetting of this variable results from the−v command line option.

Other operations treat variables numerically. The ‘@’ command permits numeric calculations to be per-
formed and the result assigned to a variable. Variable values are, however, always represented as (zero or
more) strings.For the purposes of numeric operations, the null string is considered to be zero, and the sec-
ond and additional words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable substitution is per-
formed keyed by ‘$’ characters.This expansion can be prevented by preceding the ‘$’ with a ‘\’ except with-
in ‘"’ s where italways occurs, and within ‘´’s where itnever occurs. Stringsquoted by ‘`’ are interpreted lat-
er (seeCommand substitution below) so ‘$’ substitution does not occur there until later, if at all. A
‘$’ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded separately.
Otherwise, the command name and entire argument list are expanded together. It is thus possible for the first
(command) word (to this point) to generate more than one word, the first of which becomes the command
name, and the rest of which become arguments.

Unless enclosed in ‘"’ or given the ‘:q’ modifier the results of variable substitution may eventually be com-
mand and filename substituted.Within ‘"’, a variable whose value consists of multiple words expands to a
(portion of) a single word, with the words of the variables value separated by blanks.When the ‘:q’ modifier
is applied to a substitution the variable will expand to multiple words with each word separated by a blank
and quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the shell input.Except as
noted, it is an error to reference a variable that is not set.

$name
${name}

Are replaced by the words of the value of variablename, each separated by a blank.Braces
insulatename from following characters that would otherwise be part of it.Shell variables
have names consisting of up to 20 letters and digits starting with a letter. The underscore
character is considered a letter. If name is not a shell variable, but is set in the environment,
then that value is returned (but : modifiers and the other forms given below are not available
here).

$name [selector]
${name[selector] }

May be used to select only some of the words from the value ofname. The selector is sub-
jected to ‘$’ substitution and may consist of a single number or two numbers separated by a
‘−’. The first word of a variables value is numbered ‘1’.If the first number of a range is
omitted it defaults to ‘1’. If the last number of a range is omitted it defaults to ‘$#name’.
The selector ‘∗’ selects all words. Itis not an error for a range to be empty if the second ar-
gument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. Thisis useful for later use in a ‘$argv[selector]’.
$0 Substitutesthe name of the file from which command input is being read.An error occurs if

the name is not known.
$number

4th Berkeley Distribution January21, 1994 7

CSH (1) UNIX Reference Manual CSH (1)

${number}
Equivalent to ‘$argv[number]’.

$∗ Equivalent to ‘$argv[∗]’. The modifiers ‘:e’, ‘:h’, ‘:t’, ‘:r’, ‘:q’ and ‘:x’ may be applied to the
substitutions above as may ‘:gh’, ‘:gt’ and ‘:gr’. If braces ‘{’ ’}’ appear in the command
form then the modifiers must appear within the braces.The current implementation allows
only one ‘:’ modifier on each ‘$’ expansion.

The following substitutions may not be modified with ‘:’ modifiers.
$?name
${?name}

Substitutes the string ‘1’ if name is set, ‘0’ if it is not.
$?0 Substitutes‘1’ if the current input filename is known, ‘0’ if it is not.
$$ Substitutethe (decimal) process number of the (parent) shell.
$! Substitutethe (decimal) process number of the last background process started by this shell.
$< Substitutesa line from the standard input, with no further interpretation.It can be used to

read from the keyboard in a shell script.

Command and filename substitution
The remaining substitutions, command and filename substitution, are applied selectively to the arguments of
builtin commands.By selectively, we mean that portions of expressions which are not evaluated are not sub-
jected to these expansions. For commands that are not internal to the shell, the command name is substituted
separately from the argument list.This occurs very late, after input-output redirection is performed, and in a
child of the main shell.

Command substitution
Command substitution is shown by a command enclosed in ‘`’.The output from such a command is normal-
ly broken into separate words at blanks, tabs and newlines, with null words being discarded; this text then re-
places the original string.Within ‘"’ s, only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Notethat it is thus possible for a command
substitution to yield only part of a word, even if the command outputs a complete line.

Filename substitution
If a word contains any of the characters ‘∗’, ‘?’, ‘[’ or ‘{’ or be gins with the character ‘˜’, then that word is a
candidate for filename substitution, also known as ‘globbing’. This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names that match the pattern.In a list of words specifying
filename substitution it is an error for no pattern to match an existing file name, but it is not required for each
pattern to match.Only the metacharacters ‘∗’, ‘?’ and ‘[’ imply pattern matching, the characters ‘˜’ and ‘{’
being more akin to abbreviations.

In matching filenames, the character ‘.’ at the beginning of a filename or immediately following a ‘/’, as well
as the character ‘/’ must be matched explicitly. The character ‘∗’ matches any string of characters, including
the null string.The character ‘?’ matches any single character. The sequence ‘[...]’ matches any one of the
characters enclosed.Within ‘ [...]’, a pair of characters separated by ‘−’ matches any character lexically be-
tween the two (inclusive).

The character ‘˜’ at the beginning of a filename refers to home directories.Standing alone, i.e., ‘˜’ it expands
to the invokers home directory as reflected in the value of the variablehome. When followed by a name con-
sisting of letters, digits and ‘−’ characters, the shell searches for a user with that name and substitutes their
home directory;thus ‘˜ken’ might expand to ‘/usr/ken’ and ‘˜ken/chmach’ to ‘/usr/ken/chmach’. Ifthe char-
acter ‘˜’ is followed by a character other than a letter or ‘/’ or does not appear at the beginning of a word, it is
left undisturbed.

4th Berkeley Distribution January21, 1994 8

CSH (1) UNIX Reference Manual CSH (1)

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’.Left to right order is preserved, with results of
matches being sorted separately at a low lev el to preserve this order. This construct may be nested.Thus,
‘˜source/s1/{oldls,ls}.c’ expands to ‘/usr/source/s1/oldls.c /usr/source/s1/ls.c’ without chance of error if the
home directory for ‘source’ is ‘/usr/source’.Similarly ‘../{memo,∗box}’ might expand to ‘../memo ../box
../mbox’. (Notethat ‘memo’ was not sorted with the results of the match to ‘∗box’.) As a special case ‘{’,
‘}’ and ‘{}’ are passed undisturbed.

Input/output
The standard input and the standard output of a command may be redirected with the following syntax:

< name Openfile name (which is first variable, command and filename expanded) as the standard
input.

<< word
Read the shell input up to a line that is identical toword . Word is not subjected to variable,
filename or command substitution, and each input line is compared toword before any sub-
stitutions are done on the input line.Unless a quoting ‘\’, ‘"’, ‘’ or ‘`’ appears inword , vari-
able and command substitution is performed on the intervening lines, allowing ‘\’ to quote
‘$’, ‘\’ and ‘`’. Commands that are substituted have all blanks, tabs, and newlines preserved,
except for the final newline which is dropped.The resultant text is placed in an anonymous
temporary file that is given to the command as its standard input.

> name
>! name
>& name
>&! name

The filename is used as the standard output.If the file does not exist then it is created; if
the file exists, it is truncated; its previous contents are lost.

If the variablenoclobber is set, then the file must not exist or be a character special file
(e.g., a terminal or ‘/dev/null’) or an error results.This helps prevent accidental destruction
of files. Here, the ‘!’ forms can be used to suppress this check.

The forms involving ‘&’ route the standard error output into the specified file as well as the
standard output.Nameis expanded in the same way as ‘<’ input filenames are.

>> name
>>& name
>>! name
>>&! name

Uses filename as the standard output; like ‘>’ but places output at the end of the file.If the
variable noclobber is set, then it is an error for the file not to exist unless one of the ‘!’
forms is given. Otherwisesimilar to ‘>’.

A command receives the environment in which the shell was invoked as modified by the input-output param-
eters and the presence of the command in a pipeline.Thus, unlike some previous shells, commands run from
a file of shell commands have no access to the text of the commands by default; instead they receive the orig-
inal standard input of the shell.The ‘<<’ mechanism should be used to present inline data.This permits
shell command scripts to function as components of pipelines and allows the shell to block read its input.
Note that the default standard input for a command run detached isnot modified to be the empty file
/dev/null ; instead the standard input remains as the original standard input of the shell.If this is a termi-
nal and if the process attempts to read from the terminal, then the process will block and the user will be no-
tified (see Jobs above).

The standard error output may be directed through a pipe with the standard output.Simply use the form ‘|&’
instead of just ‘|’.

4th Berkeley Distribution January21, 1994 9

CSH (1) UNIX Reference Manual CSH (1)

Expressions
Several of the builtin commands (to be described later) take expressions, in which the operators are similar to
those of C, with the same precedence.These expressions appear in the@, exit , if , and while com-
mands. Thefollowing operators are available:

|| && | ↑ & == != =˜ !˜ <= >= < > << >> + − ∗ / % ! ˜ ()

Here the precedence increases to the right, ‘==’ ‘!=’ ‘=˜’ and ‘!˜’, ‘<=’ ‘>=’ ‘<’ and ‘>’, ‘<<’ and ‘>>’, ‘+’
and ‘−’, ‘∗’ ‘ /’ and ‘%’ being, in groups, at the same level. The ‘==’ ‘!=’ ‘=˜’ and ‘!˜’ operators compare
their arguments as strings; all others operate on numbers.The operators ‘=˜’ and ‘!˜’ are like ‘!=’ and ‘==’
except that the right hand side is apattern (containing, e.g., ‘∗’s, ‘?’s and instances of ‘[...]’) against
which the left hand operand is matched.This reduces the need for use of theswitch statement in shell
scripts when all that is really needed is pattern matching.

Strings that begin with ‘0’ are considered octal numbers.Null or missing arguments are considered ‘0’.The
result of all expressions are strings, which represent decimal numbers.It is important to note that no two
components of an expression can appear in the same word; except when adjacent to components of expres-
sions that are syntactically significant to the parser (‘&’ ‘|’ ‘<’ ‘>’ ‘(’ ‘)’), they should be surrounded by
spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{’ and ‘}’ and file
enquiries of the form−l name wherel is one of:

r r ead access
w write access
x e xecute access
e existence
o ownership
z z ero size
f p lain file
d directory

The specified name is command and filename expanded and then tested to see if it has the specified relation-
ship to the real user. If the file does not exist or is inaccessible then all enquiries return false, i.e., ‘0’. Com-
mand executions succeed, returning true, i.e., ‘1’, if the command exits with status 0, otherwise they fail, re-
turning false, i.e., ‘0’. If more detailed status information is required then the command should be executed
outside an expression and the variablestatus examined.

Control flow
The shell contains several commands that can be used to regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from terminal input.These commands all operate by forcing the
shell to reread or skip in its input and, because of the implementation, restrict the placement of some of the
commands.

The foreach , switch , and while statements, as well as theif−then−else form of theif statement
require that the major keywords appear in a single simple command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop.(To the extent that this allows,
backward goto’s will succeed on non-seekable inputs.)

Builtin commands
Builtin commands are executed within the shell.If a builtin command occurs as any component of a pipeline
except the last then it is executed in a subshell.

4th Berkeley Distribution January21, 1994 10

CSH (1) UNIX Reference Manual CSH (1)

alias
alias name
alias name wordlist

The first form prints all aliases.The second form prints the alias for name.The final form
assigns the specifiedwordlist as the alias ofname; wordlist is command and file-
name substituted.Nameis not allowed to bealias or unalias .

alloc Shows the amount of dynamic memory acquired, broken down into used and free memory.
With an argument shows the number of free and used blocks in each size category. The cate-
gories start at size 8 and double at each step.This command’s output may vary across sys-
tem types, since systems other than the VAX may use a different memory allocator.

bg
bg % job ...

Puts the current or specified jobs into the background, continuing them if they were stopped.

break Causes execution to resume after theend of the nearest enclosingforeach or while . The
remaining commands on the current line are executed. Multi-level breaks are thus possible
by writing them all on one line.

breaksw
Causes a break from aswitch , resuming after theendsw .

case label :
A label in aswitch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shell’s working directory to directoryname. If no argument is given then change
to the home directory of the user. If name is not found as a subdirectory of the current di-
rectory (and does not begin with ‘/’, ‘./’ or ‘../’), then each component of the variable
cdpath is checked to see if it has a subdirectoryname. Finally, if all else fails but name is
a shell variable whose value begins with ‘/’, then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosingwhile or foreach . The rest of the commands
on the current line are executed.

default :
Labels the default case in aswitch statement. Thedefault should come after allcase la-
bels.

dirs Prints the directory stack; the top of the stack is at the left, the first directory in the stack be-
ing the current directory.

echo wordlist
echo −n wordlist

The specified words are written to the shell’s standard output, separated by spaces, and ter-
minated with a newline unless the−n option is specified.

else
end
endif
endsw See the description of theforeach , if , switch , andwhile statements below.

4th Berkeley Distribution January21, 1994 11

CSH (1) UNIX Reference Manual CSH (1)

eval arg ...
(As in sh (1).) Thearguments are read as input to the shell and the resulting command(s) ex-
ecuted in the context of the current shell.This is usually used to execute commands generat-
ed as the result of command or variable substitution, since parsing occurs before these sub-
stitutions. Seetset (1) for an example of usingeval .

exec command
The specified command is executed in place of the current shell.

exit
exit (expr)

The shell exits either with the value of thestatus variable (first form) or with the value of
the specifiedexpr (second form).

fg
fg % job ...

Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

foreach name (wordlist)
...
end The variablename is successively set to each member ofwordlist and the sequence of

commands between this command and the matchingend are executed. (Bothforeach
and end must appear alone on separate lines.)The builtin commandcontinue may be
used to continue the loop prematurely and the builtin commandbreak to terminate it pre-
maturely. When this command is read from the terminal, the loop is read once prompting
with ‘?’ before any statements in the loop are executed. Ifyou make a mistake typing in a
loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null characters in
the output.Useful for programs that wish to use the shell to filename expand a list of words.

goto word
The specifiedword is filename and command expanded to yield a string of the form ‘label’.
The shell rewinds its input as much as possible and searches for a line of the form ‘label:’
possibly preceded by blanks or tabs.Execution continues after the specified line.

hashstat
Print a statistics line showing how effective the internal hash table has been at locating com-
mands (and avoiding exec ´s). Anexec is attempted for each component of thepath where
the hash function indicates a possible hit, and in each component that does not begin with a
‘/’.

history
history n
history −r n
history −h n

Displays the history event list; if n is given only then most recent events are printed.The
−r option reverses the order of printout to be most recent first instead of oldest first.The
−h option causes the history list to be printed without leading numbers.This format pro-
duces files suitable for sourcing using the −h option tosource .

if (expr) command
If the specified expression evaluates true, then the singlecommand with arguments is ex-
ecuted. Variable substitution oncommand happens early, at the same time it does for the

4th Berkeley Distribution January21, 1994 12

CSH (1) UNIX Reference Manual CSH (1)

rest of theif command.Commandmust be a simple command, not a pipeline, a command
list, or a parenthesized command list.Input/output redirection occurs even if expr is false,
i.e., when command isnot executed (this is a bug).

if (expr) then
...
else if (expr2) then
...
else
...
endif If the specifiedexpr is true then the commands up to the firstelse are executed; otherwise

if expr2 is true then the commands up to the secondelse are executed, etc.Any number
of else-if pairs are possible; only oneendif is needed.Theelse part is likewise op-
tional. (Thewords else andendif must appear at the beginning of input lines; theif
must appear alone on its input line or after anelse .)

jobs
jobs −l

Lists the active jobs; the−l option lists process id’s in addition to the normal information.

kill % job
kill pid
kill −sig pid ...
kill −l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or pro-
cesses. Signalsare either given by number or by names (as given in
/usr/include/signal.h, stripped of the prefix ‘‘SIG’’). The signal names are listed
by ‘‘kill −l’ ’. Thereis no default, just saying ‘kill’ does not send a signal to the current job.
If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will
be sent a CONT (continue) signal as well.

limit
limit resource
limit resource maximum-use
limit −h
limit −h resource
limit −h resource maximum-use

Limits the consumption by the current process and each process it creates to not individually
exceedmaximum-use on the specifiedresource . If no maximum-use is given, then
the current limit is printed; if noresource is given, then all limitations are given. If the
−h flag is given, the hard limits are used instead of the current limits.The hard limits im-
pose a ceiling on the values of the current limits.Only the super-user may raise the hard
limits, but a user may lower or raise the current limits within the legal range.

Resources controllable currently includecputime (the maximum number of cpu-seconds
to be used by each process),filesize (the largest single file that can be created),
datasize (the maximum growth of the data+stack region viasbrk (2) beyond the end of
the program text), stacksize (the maximum size of the automatically-extended stack re-
gion), andcoredumpsize (the size of the largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other thancputime the default scale is ‘k’ or ‘kilobytes’ (1024
bytes); a scale factor of ‘m’ or ‘megabytes’ may also be used.For cputime the default
scale is ‘seconds’; a scale factor of ‘m’ for minutes or ‘h’ for hours, or a time of the form
‘mm:ss’ giving minutes and seconds also may be used.

4th Berkeley Distribution January21, 1994 13

CSH (1) UNIX Reference Manual CSH (1)

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login Terminate a login shell, replacing it with an instance of/bin/login. This is one way to
log off, included for compatibility withsh (1).

logout
Terminate a login shell.Especially useful ifignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the scheduling priority for this shell to 4.The second form sets the priori-
ty to the given number . The final two forms run command at priority 4 andnumber re-
spectively. The greater the number, the less cpu the process will get.The super-user may
specify negative priority by using ‘nice −number ...’. Commandis always executed in a sub-
shell, and the restrictions placed on commands in simpleif statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for the remainder
of the script. The second form causes the specified command to be run with hangups ig-
nored. Allprocesses detached with ‘&’ are effectively nohup ´ed.

notify
notify % job ...

Causes the shell to notify the user asynchronously when the status of the current or specified
jobs change; normally notification is presented before a prompt.This is automatic if the
shell variablenotify is set.

onintr
onintr −
onintr label

Control the action of the shell on interrupts.The first form restores the default action of the
shell on interrupts which is to terminate shell scripts or to return to the terminal command in-
put level. The second form ‘onintr −’ causes all interrupts to be ignored.The final form
causes the shell to execute a ‘goto label’ when an interrupt is received or a child process ter-
minates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands. Finallyonintr statements are ignored in the system startup files where inter-
rupts are disabled (/etc/csh.cshrc, /etc/csh.login).

popd
popd +n

Pops the directory stack, returning to the new top directory. With an argument `+n´ discards
the n´th entry in the stack.The members of the directory stack are numbered from the top
starting at 0.

pushd
pushd name
pushd n

With no arguments,pushd exchanges the top two elements of the directory stack.Given a
name argument,pushd changes to the new directory (alacd) and pushes the old current
working directory (as incsw) onto the directory stack.With a numeric argument,pushd

4th Berkeley Distribution January21, 1994 14

CSH (1) UNIX Reference Manual CSH (1)

rotates then´th argument of the directory stack around to be the top element and changes to
it. Themembers of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in thepath variable to be re-
computed. Thisis needed if new commands are added to directories in thepath while you
are logged in.This should only be necessary if you add commands to one of your own di-
rectories, or if a systems programmer changes the contents of a system directory.

repeat count command
The specifiedcommandwhich is subject to the same restrictions as thecommandin the one
line if statement above, is executedcount times. I/O redirections occur exactly once,
ev en if count is 0.

set
set name
set name=word
set name[index] =word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables that have
other than a single word as their value print as a parenthesized word list. The second form
setsname to the null string.The third form setsname to the singleword . The fourth form
sets theindex ’th component ofname to word ; this component must already exist. Thefi-
nal form setsname to the list of words inwordlist . The value is always command and
filename expanded.

These arguments may be repeated to set multiple values in a single set command.Note how-
ev er, that variable expansion happens for all arguments before any setting occurs.

setenv
setenv name
setenv name value

The first form lists all current environment variables. Itis equivalent toprintenv (1). The
last form sets the value of environment variablename to bevalue , a single string. The
second form setsname to an empty string.The most commonly used environment variables
USER, TERM, and PATHare automatically imported to and exported from thecsh variables
user , term , andpath ; there is no need to usesetenv for these.

shift
shift variable

The members ofargv are shifted to the left, discardingargv [1]. It is an error for argv
not to be set or to have less than one word as value. Thesecond form performs the same
function on the specified variable.

source name
source −h name

The shell reads commands fromname. Source commands may be nested; if they are nest-
ed too deeply the shell may run out of file descriptors.An error in asource at any lev el
terminates all nestedsource commands. Normallyinput duringsource commands is not
placed on the history list; the −h option causes the commands to be placed on the history list
without being executed.

stop
stop % job ...

Stops the current or specified jobs that are executing in the background.

4th Berkeley Distribution January21, 1994 15

CSH (1) UNIX Reference Manual CSH (1)

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal withˆZ . This
is most often used to stop shells started bysu (1).

switch (string)
case str1 :

...
breaksw

...
default :

...
breaksw

endsw Each case label is successively matched against the specifiedstring which is first com-
mand and filename expanded. Thefile metacharacters ‘∗’, ‘?’ and ‘[...]’ may be used in the
case labels, which are variable expanded. Ifnone of the labels match before the ‘default’ la-
bel is found, then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line.The commandbreaksw causes execution to
continue after theendsw . Otherwise control may fall through case labels and the default la-
bel as in C.If no label matches and there is no default, execution continues after theendsw .

time
time command

With no argument, a summary of time used by this shell and its children is printed.If argu-
ments are given the specified simple command is timed and a time summary as described un-
der thetime variable is printed. If necessary, an extra shell is created to print the time
statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value (second form).
The mask is given in octal. Commonvalues for the mask are 002 giving all access to the
group and read and execute access to others or 022 giving all access except write access for
users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.Thus all aliases are re-
moved by ‘unalias∗’. It is not an error for nothing to beunaliased .

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit
unlimit resource
unlimit −h
unlimit −h resource

Removes the limitation onresource . If no resource is specified, then allresource
limitations are removed. If −h is given, the corresponding hard limits are removed. Only
the super-user may do this.

unset pattern
All variables whose names match the specified pattern are removed. Thusall variables are
removed by ‘unset∗’; this has noticeably distasteful side-effects. Itis not an error for noth-
ing to beunset .

4th Berkeley Distribution January21, 1994 16

CSH (1) UNIX Reference Manual CSH (1)

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment. See
also thesetenv command above andprintenv (1).

wait Wait for all background jobs.If the shell is interactive, then an interrupt can disrupt the wait.
After the interrupt, the shell prints names and job numbers of all jobs known to be outstand-
ing.

which command
Displays the resolved command that will be executed by the shell.

while (expr)
...
end While the specified expression evaluates non-zero, the commands between thewhile and

the matchingend are evaluated. Break andcontinue may be used to terminate or con-
tinue the loop prematurely. (The while andend must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for theforeach statement if the
input is a terminal.

%job Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@
@name= expr
@name[index] = expr

The first form prints the values of all the shell variables. Thesecond form sets the specified
name to the value ofexpr . If the expression contains ‘<’, ‘>’, ‘&’ or ‘|’ then at least this
part of the expression must be placed within ‘(’ ‘)’.The third form assigns the value of
expr to the index ’th argument ofname. Both name and itsindex ’th component must
already exist.

The operators ‘∗=’, ‘+=’, etc are available as in C.The space separating the name from the assignment oper-
ator is optional.Spaces are, however, mandatory in separating components ofexpr which would otherwise
be single words.

Special postfix ‘++’ and ‘−−’ operators increment and decrementname respectively, i.e., ‘@ i++’.

Pre-defined and envir onment variables
The following variables have special meaning to the shell.Of these,argv , cwd, home , path, prompt ,
shell andstatus are always set by the shell.Except forcwd andstatus , this setting occurs only at
initialization; these variables will not then be modified unless done explicitly by the user.

The shell copies the environment variableUSERinto the variableuser , TERMinto term , and HOMEinto
home, and copies these back into the environment whenever the normal shell variables are reset.The envi-
ronment variablePATHis likewise handled; it is not necessary to worry about its setting other than in the file
.cshrc as inferiorcsh processes will import the definition ofpath from the environment, and re-export it
if you then change it.

argv Set to the arguments to the shell, it is from this variable that positional parameters are substi-
tuted, i.e., ‘$1’ is replaced by ‘$argv[1]’, etc.

cdpath Gives a list of alternate directories searched to find subdirectories inchdir commands.

cwd The full pathname of the current directory.

4th Berkeley Distribution January21, 1994 17

CSH (1) UNIX Reference Manual CSH (1)

echo Set when the−x command line option is given. Causeseach command and its arguments to
be echoed just before it is executed. For non-builtin commands all expansions occur before
echoing. Builtincommands are echoed before command and filename substitution, since
these substitutions are then done selectively.

filec Enable file name completion.

histchars Can be given a string value to change the characters used in history substitution.The first
character of its value is used as the history substitution character, replacing the default charac-
ter ‘!’. The second character of its value replaces the character ‘↑’ i n quick substitutions.

histfile Can be set to the pathname where history is going to be saved/restored.

history Can be given a numeric value to control the size of the history list.Any command that has
been referenced in this many events will not be discarded.Too large values ofhistory may
run the shell out of memory. The last executed command is always saved on the history list.

home The home directory of the invoker, initialized from the environment. Thefilename expansion
of ‘˜ ’ refers to this variable.

ignoreeof If set the shell ignores end-of-file from input devices which are terminals.This prevents shells
from accidentally being killed by control-D’s.

mail The files where the shell checks for mail.This checking is done after each command comple-
tion that will result in a prompt, if a specified interval has elapsed.The shell says ‘You have
new mail.’ i f the file exists with an access time not greater than its modify time.

If the first word of the value ofmail is numeric it specifies a different mail checking interval,
in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’ when there is mail
in the filename.

noclobber As described in the section on input/output, restrictions are placed on output redirection to in-
sure that files are not accidentally destroyed, and that ‘>>’ redirections refer to existing files.

noglob If set, filename expansion is inhibited.This inhibition is most useful in shell scripts that
are not dealing with filenames, or after a list of filenames has been obtained and further ex-
pansions are not desirable.

nonomatch If set, it is not an error for a filename expansion to not match any existing files; instead the
primitive pattern is returned.It is still an error for the primitive pattern to be malformed, i.e.,
‘echo [’ still gives an error.

notify If set, the shell notifies asynchronously of job completions; the default is to present job com-
pletions just before printing a prompt.

path Each word of the path variable specifies a directory in which commands are to be sought for
execution. Anull word specifies the current directory. If there is nopath variable then only
full path names will execute. Theusual search path is ‘.’, ‘/bin’ and ‘/usr/bin’, but this may
vary from system to system.For the super-user the default search path is ‘/etc’, ‘/bin’ and
‘/usr/bin’. A shell that is given neither the−c nor the −t option will normally hash the con-
tents of the directories in thepath variable after reading.cshrc , and each time thepath
variable is reset.If new commands are added to these directories while the shell is active, it
may be necessary to do arehash or the commands may not be found.

prompt The string that is printed before each command is read from an interactive terminal input. If a
‘!’ appears in the string it will be replaced by the current event number unless a preceding ‘\’

4th Berkeley Distribution January21, 1994 18

CSH (1) UNIX Reference Manual CSH (1)

is given. Default is ‘% ’, or ‘# ’ for the super-user.

savehist Is given a numeric value to control the number of entries of the history list that are saved in
˜/.history when the user logs out.Any command that has been referenced in this many events
will be saved. Duringstart up the shell sources ˜/.history into the history list enabling history
to be saved across logins.Too large values ofsavehist will slow down the shell during
start up. If savehist is just set, the shell will use the value ofhistory.

shell The file in which the shell resides.This variable is used in forking shells to interpret files that
have execute bits set, but which are not executable by the system.(See the description of
Non-builtin Command Execution below.) Initialized to the (system-dependent) home of the
shell.

status The status returned by the last command.If it terminated abnormally, then 0200 is added to
the status.Builtin commands that fail return exit status ‘1’, all other builtin commands set sta-
tus to ‘0’.

time Controls automatic timing of commands.If set, then any command that takes more than this
many cpu seconds will cause a line giving user, system, and real times and a utilization per-
centage which is the ratio of user plus system times to real time to be printed when it termi-
nates.

verbose Set by the−v command line option, causes the words of each command to be printed after
history substitution.

Non-builtin command execution
When a command to be executed is found to not be a builtin command the shell attempts to execute the com-
mand viaexecve (2). Eachword in the variablepath names a directory from which the shell will attempt
to execute the command.If it is given neither a−c nor a −t option, the shell will hash the names in these
directories into an internal table so that it will only try anexec in a directory if there is a possibility that the
command resides there.This shortcut greatly speeds command location when many directories are present
in the search path.If this mechanism has been turned off (via unhash), or if the shell was given a −c or
−t argument, and in any case for each directory component ofpath that does not begin with a ‘/’, the shell
concatenates with the given command name to form a path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell.Thus

(cd ; pwd) ; pwd

prints thehome directory; leaving you where you were (printing this after the home directory), while

cd ; pwd

leaves you in thehome directory. Parenthesized commands are most often used to prevent chdir from af-
fecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is assumed to be a file
containing shell commands and a new shell is spawned to read it.

If there is analias for shell then the words of the alias will be prepended to the argument list to form the
shell command.The first word of thealias should be the full path name of the shell (e.g., ‘$shell’).Note
that this is a special, late occurring, case ofalias substitution, and only allows words to be prepended to
the argument list without change.

Signal handling
The shell normally ignoresquit signals. Jobsrunning detached (either by& or thebg or %... & com-
mands) are immune to signals generated from the keyboard, including hangups.Other signals have the val-
ues which the shell inherited from its parent.The shell’s handling of interrupts and terminate signals in shell

4th Berkeley Distribution January21, 1994 19

CSH (1) UNIX Reference Manual CSH (1)

scripts can be controlled byonintr . Login shells catch theterminate signal; otherwise this signal is
passed on to children from the state in the shell’s parent. Interruptsare not allowed when a login shell is
reading the file.logout .

AUTHOR
William Joy. Job control and directory stack features first implemented by J.E. Kulp of IIASA, Laxenburg,
Austria, with different syntax than that used now. File name completion code written by Ken Greer, HP
Labs. Eight-bitimplementation Christos S. Zoulas, Cornell University.

FILES
˜/.cshrc Read at beginning of execution by each shell.
˜/.login Read by login shell, after ‘.cshrc’ at login.
˜/.logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh ∗ Temporary file for ‘<<’.
/etc/passwd Source of home directories for ‘˜name’.

LIMIT ATIONS
Word lengths − Words can be no longer than 1024 characters.The system limits argument lists to 10240
characters. Thenumber of arguments to a command that involves filename expansion is limited to 1/6’th the
number of characters allowed in an argument list.Command substitutions may substitute no more characters
than are allowed in an argument list.To detect looping, the shell restricts the number ofalias substitutions
on a single line to 20.

SEE ALSO
sh (1), access (2), execve (2), fork (2), killpg (2), pipe (2), sigvec (2), umask(2),
setrlimit (2), wait (2), tty (4), a.out (5), environ (7),
introduction to the C shell

HISTORY
Csh appeared in 3BSD. It was a first implementation of a command language interpreter incorporating a his-
tory mechanism (see History Substitutions), job control facilities (see Jobs), interactive file name and user
name completion (see File Name Completion), and a C-like syntax. Thereare now many shells that also
have these mechanisms, plus a few more (and maybe some bugs too), which are available through the usenet.

BUGS
When a command is restarted from a stop, the shell prints the directory it started in if this is different from
the current directory; this can be misleading (i.e., wrong) as the job may have changed directories internally.

Shell builtin functions are not stoppable/restartable.Command sequences of the form ‘a ; b ; c’ are also not
handled gracefully when stopping is attempted.If you suspend ‘b’, the shell will immediately execute ‘c’.
This is especially noticeable if this expansion results from analias . It suffices to place the sequence of
commands in ()’s to force it to a subshell, i.e., ‘(a ; b ; c)’.

Control over tty output after processes are started is primitive; perhaps this will inspire someone to work on a
good virtual terminal interface. Ina virtual terminal interface much more interesting things could be done
with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should be pro-
vided instead of aliases.

Commands within loops, prompted for by ‘?’, are not placed on thehistory list. Controlstructure should
be parsed instead of being recognized as built-in commands.This would allow control commands to be
placed anywhere, to be combined with ‘|’, and to be used with ‘&’ and ‘;’ metasyntax.

4th Berkeley Distribution January21, 1994 20

CSH (1) UNIX Reference Manual CSH (1)

It should be possible to use the ‘:’ modifiers on the output of command substitutions.

The way thefilec facility is implemented is ugly and expensive.

4th Berkeley Distribution January21, 1994 21

