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CHAPTER 1

Introduction

With the majority of hardware manufacturers now including Single Instruction

Multiple Data (SIMD) capabilities in their processors, SIMD processing has become a

hot topic. However, SIMD, which refers to the exploitation of data parallelism and

the application of a single instruction to multiple data entities in parallel, is not a

new idea. Historically, this technique was used by large vector machines, typically

containing multiple processor elements which were slaves to a single control unit.

The potential benefits of employing this style of processing are obvious: by

processing X elements in parallel, the time taken to process a total of N elements can

theoretically be reduced by a factor of X, in comparison to that achievable with a

standard Single Instruction Single Data (SISD) implementation. Despite these

benefits, this style of processing failed to gain widespread acceptance and the

majority of general purpose machines created to-date have been SISD in nature. It is

only over recent years, as an alternative form of SIMD processing became practical −
and driven to a large extent by interest in multimedia applications, which greatly

benefit from this technique − that this concept has finally become accepted into

mainstream computing. This new technique does not require the use of multiple

processors, but rather focusses on employing SIMD within a single processor.

Since the 1980s ALUs, registers and datapath widths have increased from 8 → 16-bits

to 64-bits and beyond. Yet, in many applications, the majority of the variables remain

much smaller than 64-bits. One class of applications which typifies this is

multimedia applications, which primarily operate on 8- and 16-bit variables. The

functionality to handle much larger variables than are required in practice raises the

possibility of attempting to pack multiple data elements into one 64-bit register and

then process all of these smaller elements of data in parallel − SIMD within a register.

This concept was championed by Sun Microsystems, which in 1995 introduced into

their flagship the UltraSPARC® processor, dedicated hardware to facilitate this form

of SIMD processing. Named the Visual Instruction Set (VISTM instruction set), this

enhancement represented the first comprehensive SIMD instruction set extension on

a general purpose processor.
Chapter 1: Introduction − 7
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CHAPTER 2

The VIS Instruction Set

The VIS instruction set is a set of "RISC-style" SIMD instructions which are

extensions to the standard SPARC® V9 instruction set. Initially introduced with the

UltraSPARC I processor, these integer SIMD instructions were primarily focussed on

boosting the performance of multimedia applications. Capitalizing on the realization

that variables are frequently smaller than the width of the processor’s ALUs,

registers and datapaths, the VIS instruction set breaks with the traditional view of

one-register-one-variable. Instead, the VIS instruction set views the UltraSPARC

processor’s registers as being virtually partitioned to contain a number of smaller

variables, frequently referred to as packed data types. Providing support for integer

SIMD operations, the VIS instruction set utilizes several different register

partitioning formats and operates on 8-, 16- and 32-bit packed integers, as is

illustrated in Figure 2-1. With the UltraSPARC processor’s 64-bit registers, these

formats facilitate both two- and four-way parallelism.

In Figure 2-1, the VIS instruction set partitions 32-bit and 64-bit floating point

registers to hold multiple short (8-, 16-, and 32-bit) integer variables.

Figure 2-1 The VIS Instruction Set Data Types

32-bit Variable u8 u8u8u8

8162432 0

32-bit Variable

1632 015

s s16

64-bit Variable

32 31 0

s

64

64-bit Variable

48 32 16 015

s ss16 s16

s s32

s ss16 s16

s s16

s32

64

32-bit Variable u8 u8u8u8

8162432 0

32-bit Variable

1632 015

s s16

64-bit Variable

32 31 0

s

64

64-bit Variable

48 32 16 015

s ss16 s16

s s32

s ss16 s16

s s16

s32

64
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While targeted at integer data types, the VIS instruction set was incorporated into

the UltraSPARC processor’s Floating Point Unit (FPU). The decision to segregate the

integer and integer SIMD units has a couple of important performance benefits.

Firstly, by integrating the VIS instruction set into a different set of pipelines, both the

VIS instruction set and the integer units can be utilized in parallel, maximizing

instruction level parallelism. Secondly, this segregation has the additional benefit of

maximizing the number of usable registers, with the VIS instruction set utilizing a

different register set to the standard integer units.

The VIS instruction set, which has recently been expanded with the debut of VIS 2.0

in Sun’s UltraSPARC III processor, provides the entire suite of instructions required

to facilitate integer SIMD operations in the FPU. The VIS instruction set is comprised

of over 80 instructions which can be loosely categorized as follows [1][2]:
• VIS 1.0 (available on all UltraSPARC processors):

ο Arithmetic and logical instructions

ο Comparison instructions

ο Format conversion instructions, to provide an easy mechanism to switch between the
different supported data formats

ο Instructions to handle misaligned data

ο Memory access instructions suited to high bandwidth data movement and the retrieval of
the supported data formats

ο Array instructions to provide efficient access to large three dimensional data sets

ο An instruction specifically targeted at the motion estimation required in MPEG

• VIS 2.0 (available starting with the UltraSPARC III processor) also includes:

ο A highly flexible data manipulation instruction

These instruction classes are now discussed in more detail.

2.1. Arithmetic and Logical Instructions
The VIS instruction set provides the ability to add, subtract, and multiply up to four

different variables in one operation. In common with standard SISD arithmetic

operations, the operands continue to reside in separate registers, with the packed

elements in each source operand interacting with identically positioned elements in

the other source operand to produce the result, as is illustrated in Figure 2-2.

Functionality is provided to perform 16- and 32-bit SIMD additions and

subtractions, as illustrated in Figure 2-3 and Figure 2-4. Multiplication operations

center on 8-bit by 16-bit SIMD multiplications, with the results either truncated to

16-bits (as illustrated in Figure 2-5) or expanded to 32-bits. Multiplications can be

combined to facilitate 16-bit by 16-bit operations.

In Figure 2-2, the VIS instruction set SIMD instructions exploit the SPARC

processor’s three operand instruction set architecture. The packed variables

contained in source operands A and B interact in a pair-wise fashion to generate

the result.
10 − The VIS Instruction Set



Figure 2-2 VIS Instruction Set SIMD Instructions Exploit the SPARC Processor’s Three Operand

Instruction Set Architecture

In Figure 2-3, the signed 16-bit packed variables in A and B are added together in a
pair-wise fashion.

Figure 2-3 The 16-bit SIMD VIS Instruction Set Addition Instruction

In Figure 2-4, the signed 32-bit packed variables in B are subtracted from those in A
in a pair-wise fashion.

Figure 2-4 The 32-bit SIMD VIS Instruction Set Subtraction Instruction

In Figure 2-5, the packed variables contained in A (unsigned 8-bit variables) and B
(signed 16-bit variables) are multiplied together in a pair-wise fashion. For this
particular variant of the VIS instruction set multiplication instruction, only the upper
16-bits of each of the 24-bit products are retained and appear in the result, although
the VIS instruction set provides other multiplication instructions which retain the
entire product.

A:

B:

Result = A op B: A0 op B0 A1 op B1 A2 op B2 An op Bn

A0 A1 A2

B0 B1 B2

An

Bn

A:

B:

Result = A op B: A0 op B0 A1 op B1 A2 op B2 An op Bn

A0 A1 A2

B0 B1 B2

An

Bn

48 32 064 16

A:

B:

A+B:

0xf001 0xffff 0x8000 0x0000

0xf000 0x000a 0x8001 0x0001

0xe00b 0x0009 0x0001 0x0001

48 32 064 16

A:

B:

A+B:

0xf001 0xffff 0x8000 0x0000

0xf000 0x000a 0x8001 0x0001

0xe00b 0x0009 0x0001 0x0001

64

B:

A-B:

32 0

A: 0xffffffff 0x00000000

0x00000015 0x0000000a

0xffffffea 0xfffffff6

64

B:

A-B:

32 0

A: 0xffffffff 0x00000000

0x00000015 0x0000000a

0xffffffea 0xfffffff6
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Figure 2-5 VIS Instruction Set 8x16-bit −> 16-bit SIMD VIS Instruction Set Multiplication

Instruction

The VIS instruction set also provides a full suite of logical instructions. While SIMD

logical operations can be trivially performed using standard integer logical

instructions1, the VIS instruction set provides its own logical instructions in order to

avoid the requirement to move the data back to the integer registers every time a

logical operation is required.

2.2. Comparison Instructions
The VIS instruction set contains a number of variants of the SIMD compare

instruction, with functionality being provided to undertake the following operations

on 64-bit variables, with either 16- or 32-bit partitioning:

• less-than

• less than or equal to

• greater-than

• greater than or equal to

• equal to

• not equal to

The instructions return a 2- or 4-bit bit field contained in the low order bits of a 32-bit

integer, with each bit representing the outcome of a comparison, as is illustrated in

Figure 2-6 and Figure 2-7.

In Figure 2-6, the signed 16-bit packed variables in A and B are compared with each

other in a pair-wise fashion. This figure illustrates a greater-than operation, with

the 4-bit bit-field contained in the result indicating, for each of the four pairs of

packed variables, whether A is greater-than B (bit set on true).

1. The VIS instruction set operates on the floating point (FP) registers.

32 01624 8

B:

A*B:

A: 0xa1 0xff 0x01 0x00

0x1600 0x1a00 0x1a00 0x1a00

0x0dd6 0x19eb 0x001a 0x0000

64

32 01624 8

B:

A*B:

A: 0xa1 0xff 0x01 0x00

0x1600 0x1a00 0x1a00 0x1a00

0x0dd6 0x19eb 0x001a 0x0000

64
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Figure 2-6 The 16-bit SIMD VIS Instruction Set Compare Instruction

In Figure 2-7, the signed 32-bit packed variables in A and B are compared with each

other in a pair-wise fashion. This figure illustrates an equal-to operation, with the

2-bit bit-field contained in the result indicating, for each of the two pairs of packed

variables, whether A is equal-to B (bit set on true).

Figure 2-7 The 32-bit SIMD VIS Instruction Set Compare Instruction

2.3. Format Conversion Instructions
These conversion instructions convert SIMD data of one type into another,

facilitating changes in both the level of parallelism and the degree of precision

achievable. The VIS instruction set provides 32 ↔ 8, 32 ↔ 16 and 16 ↔ 8-bit

conversion operations. Figure 2-8 illustrates one of the most frequently used

instructions of this class, fpmerge , which generates a 64-bit result by combining

alternate bytes from A and B.

4864 16

A:

B:

A>B:

32 0

32 04

0x0000 0x000a 0x000a 0x000a

0x000a 0xffff 0x000a 0x0001

0 01 1

4864 16

A:

B:

A>B:

32 0

32 04

0x0000 0x000a 0x000a 0x000a

0x000a 0xffff 0x000a 0x0001

0 01 1

4864 16

A:

B:

A>B:

32 0

32 04

0x0000 0x000a 0x000a 0x000a

0x000a 0xffff 0x000a 0x0001

0 01 1

64

B:

A=B:

A:

32 0

32 02

0x0000000a 0x0000000a

0x0000000a0x0000000b

0 1

64

B:

A=B:

A:

32 0

32 02

0x0000000a 0x0000000a

0x0000000a0x0000000b

0 1

64

B:

A=B:

A:

32 0

32 02

0x0000000a 0x0000000a

0x0000000a0x0000000b

0 1
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Figure 2-8 One of the Many Format Conversion Instructions Provided in the VIS Instruction Set

2.4. Data Misalignment Handling Instructions
When developing SIMD code, in order to achieve maximum performance, it is

beneficial if the packed data elements that are the target of the SIMD instructions are

loaded using as few operations as possible. This normally requires that the two, four

or eight packed data elements that constitute an operand be considered as a 64-bit

entity and retrieved using a single 64-bit load instruction (and similarly for store).

Consequently, in addition to the requirement to ensure that these elements occupy

contiguous locations in memory, the memory model mandates that this 64-bit

variable be correctly aligned in memory, i.e., the first packed data element must be

aligned on an 8-byte boundary.

This alignment criteria is not always easy to satisfy − especially on legacy

applications − and data misalignment can be a serious problem when developing

SIMD code. However, the VIS instruction set readily overcomes this problem by

providing the faligndata  instruction which can be used to resolve arbitrary byte

misalignment.

In Figure 2-9, the VIS instruction set faligndata instruction, which is utilized for

resolving misalignment problems, concatenates A and B and then extracts eight

contiguous bytes. The start byte is stipulated by the align field in the gsr register2.

The shaded bytes in this figure illustrate the bytes which are extracted from A and

B when the align field is set to 0x3.

2. The correct value for the align field in the gsr register can be trivially computed using the VIS instruction set alignaddr
instruction: provided with the address of the first required byte, this instruction sets the align field appropriately and
returns the correct 8-byte aligned address for A.

AmergeB:

48 32 064 16

8162432 0

A:

B:

0x00 0x00 0x00 0x00

0x0d 0x0c 0x0b 0x0a

0x000d 0x000c 0x000b 0x000aAmergeB:

48 32 064 16

8162432 0

A:

B:

0x00 0x00 0x00 0x00

0x0d 0x0c 0x0b 0x0a

0x000d 0x000c 0x000b 0x000a
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Figure 2-9 The VIS Instruction Set faligndata Instruction

2.5. Data Access Instructions
The SPARC processor’s FPU was originally designed to process 32-bit single

precision or 64-bit double precision FP numbers and provided no facility to load and

store the 8- and 16-bit variables frequently utilized by the VIS instruction set.

Consequently, the VIS instruction set provides additional instructions to load and

store these variables to and from the FP registers.

Additionally, the VIS instruction set provides a partial store instruction. This

requirement is a reflection of the SIMD nature of the VIS instruction set and the

realization that it may be necessary to alter any of the packed variables contained in

an 8-byte partitioned variable, while leaving the remainder unchanged. The packed

variables to be updated can be readily stipulated using the VIS instruction set edge

or compare instructions, as is illustrated in Figure 2-10. In Figure 2-10, the VIS

instruction set partial store instruction overwrites only select bytes in an 8-byte

variable. This instruction is usually used in conjunction with the VIS instruction set

edge instruction, which can be utilized to quickly generate, from the user supplied

stop address, the mask required by the partial store.

Finally, the VIS instruction set also facilitates the rapid transfer of large blocks of

data. This is accomplished with the block load and store instructions which facilitate,

via a single instruction, the transfer of 64-bytes of data between the FP registers and

memory. These operations bypass the data caches, allowing large quantities of data

to be processed without cache thrashing.

Block load and store instructions have been used with great success to accelerate

functions such as memcpy, frequently more than doubling performance.

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A faligndata B: A7 B0 B1 B2A3 A4 A5 A6

gsr.align

0x3

08163240485664 24

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A faligndata B: A7 B0 B1 B2A3 A4 A5 A6

gsr.align

0x3

08163240485664 24

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A faligndata B: A7 B0 B1 B2A3 A4 A5 A6

gsr.align

0x3

08163240485664 24
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Figure 2-10 The VIS Instruction Set Partial Store Instruction

2.6. Fast 3-D Array Access Instructions
With the ever increasing discrepancy between processor speeds and the speed of the

main memory, ensuring that the required data is located in cache memory is

increasingly important. When performing operations such as 3-D texture mapping

and volume rendering, the standard data ordering ensures that, when performing a

data lookup based on x, y and z coordinates, even a small change in the z coordinate

will frequently reference distant memory locations, resulting in frequent stalls due

to TLB and cache misses.

These stalls can be minimized by arranging the data in a blocked fashion, such that

points with spacial locality exhibit locality in memory, as illustrated in Figure 2-11.

However, the benefits of this blocked data organization are normally

counterbalanced by difficulty associated with transforming, under this new

mapping, x-y-z coordinates into memory addresses.

The VIS instruction set addresses this problem by providing an instruction to

rapidly compute the memory address of the required data element when supplied

with its x, y, and z coordinates, allowing this blocked data layout to be more easily

utilized.

Figure 2-11 illustrates the locality benefits of employing the block data formatting

structure when tracing a ray through 3-D space; the addresses of successive voxels

are normally widely separated in memory. For example, with the illustrated ray,

the separation in memory of the first voxel (1,1,1) from the origin (0,0,0) is 8 MB

(16-bit data elements). Using the VIS instruction set blocked data formatting

structure, successive elements are much closer, minimizing TLB and cache misses,

i.e., the 1,1,1 voxel is now only 42-bytes from the origin.

partial store A: B4 B5 B6 B7A0 A1 A2 B3

B4 B5 B6 B7B0 B1 B2 B3

8 byte align address

end of array

VIS edge 8

8 byte align address

A4 A5 A6 A7A0 A1 A2 A3A:

partial store A: B4 B5 B6 B7A0 A1 A2 B3

B4 B5 B6 B7B0 B1 B2 B3

8 byte align address

end of array

VIS edge 8

8 byte align address

A4 A5 A6 A7A0 A1 A2 A3A:

partial store A: B4 B5 B6 B7A0 A1 A2 B3

B4 B5 B6 B7B0 B1 B2 B3

8 byte align address

end of array

VIS edge 8

8 byte align address

A4 A5 A6 A7A0 A1 A2 A3A:

partial store A: B4 B5 B6 B7A0 A1 A2 B3

B4 B5 B6 B7B0 B1 B2 B3

8 byte align address

end of array

VIS edge 8

8 byte align address

A4 A5 A6 A7A0 A1 A2 A3A:
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Figure 2-11 The Locality Benefits of Employing the Block Data Formatting Structure

2.7. PDIST Instruction
The VIS instruction set pdist  instruction computes the sum of the absolute values

of the differences between the eight 8-bit pixel pairs contained in two 64-bit

variables. Additionally, pdist combines this new accumulation total with the result

already present in the result register, as is illustrated in Figure 2-12. In Figure 2-12,

the VIS instruction set pdist  instruction computes the absolute difference

between the eights pairs of byte variables contained in A and B, sums these results

and then finally combines this new total with the value already present in the

result register to generate the final result. This instruction is extremely useful for

accelerating video encoder applications and its operation is discussed in more detail

in Section 4.1.

Figure 2-12 The VIS Instruction Set pdist Instruction

2.8. Data Manipulation Instructions
The introduction of VIS 2.0 with the UltraSPARC III processor saw the first

expansion in the functionality provided by the VIS instruction set. The primary new

feature introduced in VIS 2.0 was the byte shuffle instruction (bshuffle ), which

facilitates the arbitrary mixing of the bytes that comprise two 64-bit variables, as is

16.06KB

Voxel
address

Standard
offset

VIS
offset

1, 1, 1

2, 2, 2

3, 3, 3

4, 4, 4

8MB

16MB

24MB

32MB

42B

16.01KB

33.06KB

x

y

z

0, 0, 0

4, 4, 4

2048, 0, 0

0, 0, 512

0, 2048, 0
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33.06KB

x

y

z

0, 0, 0

4, 4, 4

2048, 0, 0

0, 0, 512

0, 2048, 0

A: 0xff

B:

Result i-1:

0x80 0x10 0xe0 0xee

0x354

Result i = A pdist B:

0x10 0x40 0x98

0x00 0x79 0x21 0xa6 0x01 0x12 0x44 0xa6

0x5a6

08163240485664 24

A: 0xff

B:

Result i-1:

0x80 0x10 0xe0 0xee

0x354

Result i = A pdist B:

0x10 0x40 0x98

0x00 0x79 0x21 0xa6 0x01 0x12 0x44 0xa6

0x5a6

08163240485664 24
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illustrated in Figure 2-13. The mix of bytes in the result is controlled by a 32-bit field

(termed the mask field) in a dedicated global register (the gsr  register). This

instruction represents a much more efficient and powerful tool for data

manipulation than was available under VIS 1.0 (until this point it had been

necessary to use the format conversion instructions to manipulate the ordering of

packed data elements within a 64-bit variable).

In Figure 2-13, the mask field of the gsr register controls the mapping of the bytes

contained in A and B into the result. For instance, in this example, the first digit (f)

in the mask field stipulates that the 15th byte of the input operands (B[7]) will

appear as the first byte in the result.

Figure 2-13 The VIS Instruction Set Data Manipulation Instruction

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A bshuffle B: A0 B0 A6 B2B7 A0 A3 B6

gsr.mask

0xf03e086a

08163240485664 24

0 1 2 3 4 5 6 7

8 9 a b c d e f

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A bshuffle B: A0 B0 A6 B2B7 A0 A3 B6

gsr.mask

0xf03e086a

08163240485664 24

0 1 2 3 4 5 6 7

8 9 a b c d e f

A: A4 A5 A6 A7A0 A1 A2 A3

B: B4 B5 B6 B7B0 B1 B2 B3

A bshuffle B: A0 B0 A6 B2B7 A0 A3 B6

gsr.mask
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CHAPTER 3

mediaLibTM Software

Developing SIMD code can frequently be problematic and normally requires that the

developer have a detailed knowledge of the target processor and code the

algorithms of interest directly in assembler. To make the VIS instruction set more

easily accessible to general applications, Sun provides two methods via which the

VIS instruction set can be used with ease.

Firstly, the VIS instruction set can be utilized by employing inline macros. These

macros, which are provided as part of Sun’s VIS Software Developers Kit [3], allow

the VIS instruction set instructions to be accessed from a high level language like C,

significantly simplifying and accelerating the development process.

Secondly, Sun provides one further level of abstraction − mediaLibTM software.

mediaLib software is a vast library of routines that is freely available for download

from Sun Microsystems [4] and provides high performance VIS instruction set

implementations of core algorithms from six primary functional areas, as is

illustrated in Table 3-1 [5]. By utilizing these libraries, developers gain instant access

to over 3,000 functions, all of which have been tuned for the UltraSPARC processor

and provide speedups of between 1.3 times to 10 times, with respect to standard

SISD implementations.

Additionally, by providing a simple, platform independent interface and making

minimal assumptions about the way the user data is presented, minimal code

modifications are normally required in order to use mediaLib software. Accordingly,

mediaLib software, which can be used from C, C++ and JavaTM programming

languages, provides the performance benefits of the VIS instruction set, but at a

minute fraction of the normal development time.

To-date, mediaLib software is the most complete library of its type and is

significantly more comprehensive than similar offerings from other processor

vendors. Nevertheless, the mediaLib software development remains an ongoing

process that is being constantly expanded and reworked to ensure peak performance

on the latest UltraSPARC processors. This has the advantage of removing the

requirement that developers reoptimize the core components of their codes to reflect

any microachitectural changes in next generation processors, greatly simplifying the

migration process.
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Table 3-1 An Overview of the Functionality Provided by mediaLib Software

mediaLib Software Components

Algebra Graphics Image Signal Video Volume

Matrix

operations

Draw and fill

circles and

ellipses

Basic Arithmetic:

add, ave., blend

Basic DSP: FFT,

FIR, IIR
DCT/IDCT

Maximum

intensity

searching

Vector

operations

Draw and fill

polygons

Convolution and

auto correlation
ADPCM

Motion

estimation

Ray casting

functionsData

manipulation

operations

Draw lines

and arcs

Max, min,

thresholding
Windowing

Color

conversion

Rotate and zoom
Convolution

and correlation
Interpolation
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CHAPTER 4

Applications

While the VIS instruction set, and indeed all of the other SIMD instruction set

extensions, were originally targeted at multimedia applications and provide

significant performance gains in this type of application, these instructions have

proved very beneficial in a much wider sphere of applications:

• Bioinformatics

• Cryptography

• Database systems

• Digital Signal Processing

• 3-D Visualization

• Graphics and Imaging

• Multimedia

• Networking

• Telecommunications

Several of these important application areas are now discussed in more detail.

4.1. Multimedia
Video encoding, a key component of multimedia applications, frequently involves a

computationally intensive technique referred to as motion estimation. This technique

involves computing the difference between two groups of pixels to determine if

elements in the current picture exist at some location in another image. If a close

enough match can be found, then these pixels need not be retransmitted. Instead,

they can be replicated merely by relaying their displacement in the subsequent

images, facilitating substantial reductions in bandwidth. In the majority of

implementations of the current video compression standards, this measure of

difference is computed by determining the absolute difference between pairs of

pixels and then summing this error over a block of pixels − referred to as the Sum of

the Absolute Difference (SAD) computation − and frequently accounts for the large

majority of the computational overhead associated with encoding.

The VIS instruction set pdist  instruction is specifically targeted at accelerating this

computationally intensive encoding technique. By facilitating the accumulation of

the absolute difference between eight pairs of pixels in a single cycle, it reduces the
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number of instructions required to perform the SAD computation by over a factor of

ten. By providing support for these computations, motion estimation calculations

can be accelerated by over 500% (the VIS instruction set also accelerates a wide

variety of other core video compression algorithms, as illustrated in Table 4-1),

facilitating significant streamlining of video encoding and the other applications −
such as pattern matching and character recognition applications − which rely

heavily upon this technique.

Table 4-1 illustrates the VIS instruction set based performance gains for core

components of video compression applications. Performance gains are in

comparison to an optimized SISD implementation.

4.2. DSP Algorithms
Arithmetic instructions form the core of the VIS instruction set, providing the

functionality to perform multiple arithmetic operations in parallel. The variety of

algorithms which can benefit from this functionality is virtually limitless and

encompasses such crucial algorithms as DSP (including FFTs, DCTs and filters),

checksums and a wide variety of algebraic functionality for vectors and matrices. By

providing 4-way parallel arithmetic operations and allowing the dispatch of up to

two of these SIMD instructions every cycle, the VIS instruction set provides four

times or greater speed-up for many algorithms.

For example, consider the two dimensional Inverse Discrete Cosine Transform

(IDCT). This algorithm is a central component of today’s video compression

standards [6], and, in MPEG, operates on 8x8 blocks of sub 16-bit data, frequently

accounting for over 30% of the processing overhead in an SISD decoder

implementation.

For standard SISD implementations of IDCTs, minimizing the number of

multiplications is frequently of critical importance, favoring implementation using

true 2-D techniques. However, the VIS instruction set provides a low-latency,

pipelined, SIMD multiplication unit, moving the emphasis toward reducing the

number of the predominant addition operations. This favors the exploitation of the

IDCT’s separable nature and implementation as a series of row and column based

one dimensional computations. For an 8x8 data block, the 2-D operation can be

computed by eight row based 1-D IDCTs followed by eight column based 1-D

IDCTs.

Considering the likely memory organization of the 2-D data blocks, it is readily

apparent that undertaking row based IDCTs using the VIS instruction set cannot be

Table 4-1 VIS Instruction Set Based Performance Gains for Core Components of Video

Compression Applications

Algorithm Performance Gain, %

Motion estimation 500

Quantization 393

Interpolation 326
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achieved without significant data reorganization. Consequently, it transpires that it is

optimal to undertake the 2-D IDCT as follows: undertake a series of 1-D column

based IDCTs, transpose the 8x8 block of semi-transformed data and then perform a

further set of column based IDCTs.

For 16-bit data elements, the VIS instruction set provides the functionality to perform

four 1-D column based IDCTs in parallel. As discussed in detail in Chapter 6,

Competitive Analysis, the UltraSPARC processor facilitates the dispatch of one VIS

instruction set addition/subtraction and one VIS instruction set multiplication per

cycle, allowing the four 1-D IDCTs to be performed in just 26-cycles (an eight point

scaled 1-D Chen IDCT requires eight multiplications and twenty-six additions [6]).

The data must then be transposed. For VIS 1.0, this was achieved using fpmerge
operations (illustrated in Figure 2-8), but with VIS 2.0, the bshuffle  instruction

(illustrated in Figure 2-13) significantly allows this to be undertaken more elegantly −
reducing the overhead associated with the transposition by 50%. After the data is

transposed, a further set of 1-D IDCTs are then performed on the data and the

transform is complete.

In comparison to a SISD FP implementation of the IDCT, utilizing the VIS instruction

set boosts performance by over three times. Yet, performance can be further

increased. During this computation, the integer pipelines are essentially idle, with

the vast majority of the processing performed in the FP pipelines using the VIS

instruction set. However, the computation can be readily partitioned to capitalize on

this unused resource, such that the integer pipelines are utilized to perform

operations in parallel with the VIS instruction set based processing, as is illustrated

in Figure 4-1 (the boxes labelled 4x4 refer to 4x4 transpose operations, while the

IDCT boxes refer to sets of four 1-D IDCTs). Utilizing this approach makes full use

of the UltraSPARC processor’s superscalar capabilities, dispatching four instructions

during most cycles and performing up to ten arithmetic operations every cycle.

Figure 4-1 One Possible Partitioning of the IDCT Computation Between the VIS Instruction Set and

the Integer Pipelines

Adopting this hybrid approach boosts performance by an additional 40%, yielding a

total speedup of over four times. Similar performance gains can also be achieved for

a wide range of other arithmetic algorithms, as is illustrated in Table 4-2 (data are

16-bits). Performance gains are in comparison to an optimized SISD

implementation.

Integer Pipelines

VIS Pipelines 4 x 4 IDCT4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 4 4 x 4

IDCT IDCT IDCT

Integer Pipelines

VIS Pipelines 4 x 4 IDCT4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 4 4 x 4

IDCT IDCT IDCT

Integer Pipelines

VIS Pipelines 4 x 4 IDCT4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 4 4 x 4

IDCT IDCT IDCT
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4.3. Database Systems
The VIS instruction set also provides instructions to perform compares on multiple

data elements in parallel (as discussed in Section 2.2., Comparison Instructions on

page 12). In addition to accelerating graphics operations, such as the edge detection

algorithm, image enhancement operation and 3-D rendering, these instructions have

the potential to streamline a wide variety of search algorithms, including sequential

searches, hash table lookups, message parsing and multi-way tree searches. The

optimization of these algorithms, which represent core operations in a wide variety

of applications − including database systems − is not as easily achieved with the

other SIMD instruction set extensions because of the way in which the results of

these comparisons are returned: the VIS instruction set returns the result of the

SIMD compare in the 1-bit-1-result format (illustrated in Figure 2-6 and Figure 2-7)

and places this result into the integer registers, significantly simplifying the process

of utilizing the information to direct the next iteration of the search.

The simplest search technique is the sequential search and it is readily apparent how

the VIS instruction set can be utilized to speedup this application: by comparing the

key with multiple data elements in parallel, the number of iterations required to

locate the desired element is significantly reduced. This process is illustrated in

Figure 4-2 (coded in C using Sun’s inline templates) and a basic VIS instruction set

implementation of this nature can provide a speedup in excess of 300%, with respect

to an optimized SISD implementation.

Figure 4-2 A Basic VIS Instruction Set Implementation of the Sequential Search Algorithm

The implementation presented in Figure 4-2 operates on variables which are of equal

size to the VIS instruction set partitioned data size, i.e., 16-bits. However, the code

Table 4-2 VIS Instruction Set Based Performance Gains for a Variety of Arithmetic Algorithms

Algorithm Performance Gain, %

Fletcher checksum, 8-bit 600

256-point complex FFT 136

RAID computations 274

5x5 convolution, 8-bit 243

Vector dot product 200

Matrix addition (32x32) 400

int offset[16] ={0,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};

int
searchArray(unsigned short *key, unsigned short *dataArray, int size)
{
  int     i, j, sr0;
  vis_d64 *dataArray64, key64;

  dataArray64 = (vis_d64 *) dataArray;

  key64 = vis_bshuffle(vis_ld_u16(key), vis_fzero());

  for (i = 0; i < size; i+=4)
      if ((sr0 = vis_fcmpeq16(key64, dataArray64[i]) != 0) break;

  return(i + offset[sr0]);
}

int offset[16] ={0,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};

int
searchArray(unsigned short *key, unsigned short *dataArray, int size)
{
  int     i, j, sr0;
  vis_d64 *dataArray64, key64;

  dataArray64 = (vis_d64 *) dataArray;

  key64 = vis_bshuffle(vis_ld_u16(key), vis_fzero());

  for (i = 0; i < size; i+=4)
      if ((sr0 = vis_fcmpeq16(key64, dataArray64[i]) != 0) break;

  return(i + offset[sr0]);
}
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can be readily modified to handle arbitrary length keys: by comparing the search key

and the data elements in an iterative fashion, there is now no restriction on the

length of search key, i.e., process the first 16-bits, then the second 16-bits and so on.

But why does processing four 16-bit sub-elements per operation facilitate a faster

implementation than processing one entire 64-bit key? In the worst case, it will not.

That is, when all of the data elements differ from the search key only in the last

16-bits, i.e., the upper 48-bits are identical, the performance of the SISD and the VIS

instruction set implementations will be similar. However, this is unlikely to be true

all of the time, or even, in many cases, for much of the time. Under these conditions,

it is not necessary to process all four sub-components of each data element. Rather, it

is only necessary to compare sub-elements until no more matches are detected. In

many cases, this will be after the first compare, facilitating, for arbitrary length keys,

a four times reduction in the number of compare operations required and a

corresponding increase in performance.

This technique can be extended to facilitate accelerated data retrieval from search

trees. While the single comparison that is necessitated per iteration in the binary tree

search tends to hamper the utilization of SIMD instructions, the binary tree is by no

means the only tree search method. Rather, many multi-way tree types exist and can

be readily accelerated using SIMD instructions. For example, nodes in an M-order

B-tree have up to M children and contain between M/2 and M − 1 separate keys, as

is illustrated in Figure 4-3 (in this tree each node can contain up to 3 keys and

pointers to up to 4 children), providing ample opportunity for parallelism.

Figure 4-3 A Fourth Order B-tree

From Figure 2-6 and Figure 2-7, it is apparent that the VIS instruction set excels at

implementing third and fifth order B-trees (and multiples thereof) and is capable of

providing a significant performance increase over that achievable with a standard

binary tree. Significant performance gains can also be achieved for a wide range of

other search techniques, as is illustrated in Table 4-3 (data are 16-bits, performance

gains are in comparison to an optimized SISD implementation).

Table 4-3 VIS Instruction Set Based Performance Gains for a Variety of Search Algorithms

Algorithm Performance Gain, %

Sequential search 300

B-tree search 200

Message parsing 600

11 22 33

44

55 66 77

88

99 11

12

13 14 1510
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4.4. Codecs
In the previous paragraphs, the ability of the VIS instruction set to accelerate the

core components of important applications has been highlighted. These

optimizations in turn provide a significant performance boost to the application

overall. Several notable examples are presented in Table 4-4 (performance gains are

in comparison to an optimized SISD implementation), with the VIS instruction set

able to double the performance of many applications.

Table 4-4 VIS 1.0 Based Acceleration for Several Important Applications

Application Performance Gain, %

MPEG-2 encoder 72

MPEG-2 decoder 100

H.263 encoder 111

H.263 decoder 100

H.261 encoder 66

H.261 decoder 79

JPEG encoder 139

JPEG decoder 126

G.711 47
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CHAPTER 5

Architectural Features

Since the introduction of the UltraSPARC I processor in 1995, Sun has released two

further generations of the UltraSPARC processor. The VIS instruction set, which

debuted with the UltraSPARC I processor, has been a prominent feature in each

subsequent generation, with 2001 seeing the introduction of the first revision of the

VIS instruction set included in Sun’s third generation UltraSPARC processor.

Spanning multiple generations of processors, the VIS instruction set is influenced by

microachitectural changes from one generation to the next.

5.1. VIS Instruction Set Latencies
In addition to the increased functionality discussed in Section 2.8., Data Manipulation
Instructions on page 17, the latencies of the VIS instruction set instructions on the

UltraSPARC III processor have changed from that seen in the previous generations

of UltraSPARC processors, as is illustrated in Table 5-1. These increases are similar to

those observed when moving from Intel’s Pentium III [7] to Intel’s Pentium 4 [8], but

with the wealth of registers available in the UltraSPARC processor, coupled with

Sun’s aggressive optimizing compiler and the high level of instruction level

parallelism normally achievable, it is significantly easier to continue to keep the

pipelines fully utilized with these longer latency instructions.

Table 5-1 The VIS Instruction Set Latencies

VIS Instruction Set Type UltraSPARC I/II Latency (cycles) UltraSPARC III Latency (cycles)

Addition/subtraction 1 3

Multiplication 3 4

Comparison 3 4

Format conversion 1 & 3 3 & 4

pdist - motion estimate 1 1
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5.2. Prefetch Instructions
While prefetch instructions have been available in previous generations of the

UltraSPARC processor (facilitating data prefetching to the level two cache), with the

UltraSPARC III processor prefetching becomes even more beneficial. With this

processor, there is now the option to prefetch data to a special prefetch cache which

has similar retrieval times to the level one data cache.

Additionally, by utilizing prefetch it is now also possible to achieve two loads per

cycle − one from the prefetch cache and one from the standard data cache − which

can have large benefits for many types of application. This prefetching can be

achieved in several different ways:

1. By stipulating the -xprefetch flag during compilation, the Sun compiler can automatically

determine where it would be beneficial to place these prefetch instructions.

2. Explicitly indicate what should be prefetched by inserting the appropriate pragmas.

3. The UltraSPARC III processor also provides an automatic hardware initiated prefetch, such

that, as long as the data access patterns are predictable, the required data should

automatically be fetched into the prefetch cache.

Using these techniques, it is possible to ensure that VIS code performs at maximum

efficiency on the UltraSPARC III processor.
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CHAPTER 6

Competitive Analysis

While the VIS instruction set was the first comprehensive SIMD instruction set

extension for a general purpose processor, it is now by no means the only one. Intel

offers MMX and SSE, Motorola offers AltiVec and HP offers MAX, to name but a few.

Additionally, many DSPs now also provide SIMD functionality, e.g., Analog Device’s

TigerSHARC. Nevertheless, the VIS instruction set continues to represent a powerful

SIMD solution, primarily because of the following:

• Access to a large number of registers: The VIS instruction set has been integrated into
the floating point (FP) pipelines on the UltraSPARC processor. This allows the VIS
instruction set to utilize the thirty-two 64-bit registers that comprise the FP register file,
providing ample space for temporary variables and hence facilitating the aggressive
optimization techniques that are frequently required to maximize performance. This
compares favorably with the eight registers available on the Intel Pentium 4 for use with
SSE [8].
• Multiple pipelines: The UltraSPARC processor sports two FP pipelines, allowing the
dispatch of up to two FP operations per cycle. The VIS instruction set functionality has
been split between these two pipelines, facilitating the dispatch of two non-identical VIS
instruction set instructions per cycle, subject to a number of grouping caveats. This
compares favorably with the one pipeline on the Intel Pentium 4 that handles all FP, MMX
and SSE instructions [8].
• High throughput: For each of the FP pipelines, the throughput for the VIS instruction
set instructions is one. That is, during each and every cycle, an independent VIS
instruction set instruction can potentially be dispatched into each FP pipeline. This is not
achievable on all architectures. For example, the Intel Pentium 4 processor SSE
instructions frequently only have a throughput of two: two cycles must elapse before the
pipeline can accept the same instruction again [8].
• Three operand instructions: The SPARC Instruction Set Architecture (ISA) is centered
on an instruction format that stipulates two source and one destination operand,
removing the requirement of two operand ISAs (such as the Intel Pentium 4) to regularly
duplicate one of the source operands in order to preserve its value. This significantly
reduces the number of move instructions required, minimizing redundancy and
frequently leading to a more efficient implementation, as is illustrated in Figure 6-1.

• Mixed mode operation: While the VIS instruction set utilizes the FPU, it is possible to
use both the VIS instruction set and FP instructions in the same cycle, i.e., the VIS
instruction set can be used without any performance penalty in mixed mode applications
which perform both FP and integer computations: each FP register holds 64-bits of data.
How that data is interpreted is left to the individual functional units, with the VIS
instruction set units interpreting the data as a 64-bit packed integer and the FP units
interpreting the data as a FP number. This is not true for MMX, which cannot be used in
conjunction with FP operations and requires the dispatch of a long latency state change
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instruction every time it is necessary to switch between FP and MMX computations [8].
While FP registers are stack based on Intel Pentium systems, for performance reasons, it
was decided that MMX instructions should operate with a flat register access model.
These two views of the FP register file are mutually incompatible, preventing MMX and
FP instructions from operating in parallel and necessitating the state change instruction to
move between these different views of the register file [9].

These architectural advantages, which are summarized in Table 6-1, clearly illustrate

that the VIS instruction set is a well balanced addition to the UltraSPARC

processors, seamlessly integrated and provided with sufficient CPU resources to

allow high performance VIS instruction set implementations to be developed.

Figure 6-1 Coding Efficiency Achieved With 3 Operand Instruction Formats for a Butterfly

Operation

Table 6-1 An Overview of the VIS Instruction Set Architectural Advantages

Architectural Features VIS and the UltraSPARC SSE and the Intel Pentium 4 [8]

Number of Registers 32 8

SIMD instructions/cycle 2 1

Throughput1

1. Smaller numbers are preferable.

1 2

Three operand ISA Yes No

Mixed mode operation

(FP and Integer)
Yes

SSE − yes

MMX − no

Floating Point SIMD Planned for a later version Yes

r0 = b + c;
r1 = b − c;

fpadd16  %f0,%f12, %f14
fpsub16  %f0,%f12, %f16

movq   xmm2,xmm0

paddsw xmm2,xmm1
psubsw xmm0,xmm1

3 operand instructions 2 operand instructions

2 cycle stall

r 0, r 1, b & c ar e 

packed  dat a t ypes

pseudo  code:
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CHAPTER 7

Conclusions

The previous sections of this paper provide a brief overview of Sun’s VIS instruction

set, beginning with the rationale for such an enhancement and concluding with a

comparison of the VIS instruction set and SSE. Discussion focused on the

functionality provided by the VIS instruction set and the various methods by which

customers can integrate the VIS instruction set into their applications. The most

notable of these is Sun’s free mediaLib software, an extensive collection of the VIS

instruction set optimized algorithms that can be called from customer code,

representing a rapid and painless way to accelerate applications using the VIS

instruction set.

The wide range of applications which can benefit from this SIMD instruction set

extension, that is provided on all generations of the UltraSPARC processor, is then

examined and it is illustrated that the VIS instruction set represents an extremely

powerful tool for accelerating a wide variety of customer applications.

Finally, a comparison of the VIS instruction set and the significantly more heavy-

weight SSE was provided to illustrate that, while manufacturers may expound the

extensive nature of their SIMD instructions, this is not the whole story. In many

situations, the VIS instruction set performs better because of the overall benefits of

the UltraSPARC processor architecture and because the intelligent way that the VIS

instruction set has been integrated into the processor, minimizes register pressure,

maximizes the potential for instruction level parallelism and allows the UltraSPARC

processor to perform up to ten operations per cycle.
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