
Sun Microelectronics
901 San Antonio Road
Palo Alto, CA 94303

Part No: 802-7220-02

This July 1997 -02 Revision is only available on-
line. The only changes made were to support
hypertext links in the pdf file.

UltraSPARC User’s Manual

UltraSPARC-I
UltraSPARC-II

July 1997

Copyright © 1997 Sun Microsystems, Inc. All Rights Reserved.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS

IS” WITHOUT ANY EXPRESS REPRESENTATIONS OR WARRANTIES. IN

ADDITION, SUN MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or

under license from third parties. No part of this document may be reproduced in

any form or by any means or transferred to any third party without the prior

written consent of Sun Microsystems, Inc.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the United States and other countries.

Products bearing SPARC trademarks are based upon an architecture developed

by Sun Microsystems, Inc.

The information contained in this document is not designed or intended for use

in on-line control of aircraft, air traffic, aircraft navigation or aircraft

communications; or in the design, construction, operation or maintenance of any

nuclear facility. Sun disclaims any express or implied warranty of fitness for such

uses.

Printed in the United States of America.

Contents
Preface ... 9

Overview .. 9

A Brief History of SPARC .. 9

How to Use This Book .. 10

Section I — Introducing UltraSPARC

1. UltraSPARC Basics.. 3

1.1 Overview .. 3

1.2 Design Philosophy .. 3

1.3 Component Overview .. 5

1.4 UltraSPARC Subsystem.. 10

2. Processor Pipeline ... 11

2.1 Introductions.. 11

2.2 Pipeline Stages ... 12

3. Cache Organization .. 17

3.1 Introduction.. 17

4. Overview of the MMU ... 21

4.1 Introduction.. 21

4.2 Virtual Address Translation .. 21

Section II — Going Deeper

5. Cache and Memory Interactions .. 27

5.1 Introduction.. 27
Sun Microelectronics
iii

UltraSPARC User’s Manual
5.2 Cache Flushing... 27

5.3 Memory Accesses and Cacheability ... 29

5.4 Load Buffer ... 39

5.5 Store Buffer ... 40

6. MMU Internal Architecture .. 41

6.1 Introduction.. 41

6.2 Translation Table Entry (TTE) ... 41

6.3 Translation Storage Buffer (TSB) ... 44

6.4 MMU-Related Faults and Traps .. 47

6.5 MMU Operation Summary .. 50

6.6 ASI Value, Context, and Endianness Selection for Translation 52

6.7 MMU Behavior During Reset, MMU Disable, and RED_state 54

6.8 Compliance with the SPARC-V9 Annex F... 55

6.9 MMU Internal Registers and ASI Operations ... 55

6.10 MMU Bypass Mode... 68

6.11 TLB Hardware.. 69

7. UltraSPARC External Interfaces ... 73

7.1 Introduction.. 73

7.2 Overview of UltraSPARC External Interfaces... 73

7.3 Interaction Between E-Cache and UDB.. 76

7.4 SYSADDR Bus Arbitration Protocol ... 84

7.5 UltraSPARC Interconnect Transaction Overview .. 92

7.6 Cache Coherence Protocol.. 94

7.7 Cache Coherent Transactions .. 102

7.8 Non-Cached Data Transactions... 109

7.9 S_RTO/S_ERR ... 111

7.10 S_REQ.. 111

7.11 Writeback Issues .. 112

7.12 Interrupts (P_INT_REQ)... 116

7.13 P_REPLY and S_REPLY.. 117

7.14 Multiple Outstanding Transactions .. 126

7.15 Transaction Set Summary... 129

7.16 Transaction Sequences .. 131

7.17 Interconnect Packet Formats.. 138

7.18 WriteInvalidate .. 143

8. Address Spaces, ASIs, ASRs, and Traps ... 145

8.1 Overview... 145

8.2 Physical Address Space .. 145

8.3 Alternate Address Spaces... 146
Sun Microelectronics
iv

Contents
8.4 Ancillary State Registers... 156

8.5 Other UltraSPARC Registers ... 158

8.6 Supported Traps .. 158

9. Interrupt Handling ... 161

9.1 Interrupt Vectors ... 161

9.2 Interrupt Global Registers.. 163

9.3 Interrupt ASI Registers ... 163

9.4 Software Interrupt (SOFTINT) Register... 166

10. Reset and RED_state... 169

10.1 Overview .. 169

10.2 RED_state Trap Vector ... 171

10.3 Machine State after Reset and in RED_state.. 171

11. Error Handling ... 175

11.1 Overview .. 175

11.2 Memory Errors... 178

11.3 Memory Error Registers ... 179

11.4 UltraSPARC Data Buffer (UDB) Control Register.. 185

11.5 Overwrite Policy.. 185

Section III — UltraSPARC and SPARC-V9

12. Instruction Set Summary ... 189

13. UltraSPARC Extended Instructions... 195

13.1 Introduction.. 195

13.2 SHUTDOWN ... 195

13.3 Graphics Data Formats ... 196

13.4 Graphics Status Register (GSR) ... 197

13.5 Graphics Instructions.. 198

13.6 Memory Access Instructions.. 225

14. Implementation Dependencies .. 235

14.1 SPARC-V9 General Information ... 235

14.2 SPARC-V9 Integer Operations .. 240

14.3 SPARC-V9 Floating-Point Operations.. 242

14.4 SPARC-V9 Memory-Related Operations... 247

14.5 Non-SPARC-V9 Extensions ... 249

15. SPARC-V9 Memory Models ... 255

15.1 Overview .. 255
Sun Microelectronics
v

UltraSPARC User’s Manual
15.2 Supported Memory Models ... 256

Section IV — Producing Optimized Code

16. Code Generation Guidelines .. 261

16.1 Hardware / Software Synergy .. 261

16.2 Instruction Stream Issues ... 261

16.3 Data Stream Issues... 272

17. Grouping Rules and Stalls .. 281

17.1 Introduction.. 281

17.2 General Grouping Rules ... 282

17.3 Instruction Availability... 283

17.4 Single Group Instructions .. 283

17.5 Integer Execution Unit (IEU) Instructions ... 284

17.6 Control Transfer Instructions... 287

17.7 Load / Store Instructions ... 290

17.8 Floating-Point and Graphic Instructions.. 295

Appendixes

A. Debug and Diagnostics Support .. 303

A.1 Overview... 303

A.2 Diagnostics Control and Accesses... 303

A.3 Dispatch Control Register .. 303

A.4 Floating-Point Control .. 304

A.5 Watchpoint Support .. 304

A.6 LSU_Control_Register .. 306

A.7 I-Cache Diagnostic Accesses .. 309

A.8 D-Cache Diagnostic Accesses .. 314

A.9 E-Cache Diagnostics Accesses ... 315

B. Performance Instrumentation ... 319

B.1 Overview... 319

B.2 Performance Control and Counters .. 319

B.3 PCR/PIC Accesses... 321

B.4 Performance Instrumentation Counter Events ... 321

C. Power Management .. 327

C.1 Overview... 327

C.2 Power-Down Mode ... 327
Sun Microelectronics
vi

Contents
C.3 Power-Up.. 328

D. IEEE 1149.1 Scan Interface ... 329

D.1 Introduction.. 329

D.2 Interface .. 329

D.3 Test Access Port (TAP) Controller .. 330

D.4 Instruction Register ... 333

D.5 Instructions... 333

D.6 Public Test Data Registers.. 335

E. Pin and Signal Descriptions ... 337

E.1 Introduction.. 337

E.2 Pin Descriptions... 337

E.3 Signal Descriptions.. 341

F. ASI Names .. 345

F.1 Introduction.. 345

G. Differences Between UltraSPARC Models .. 351

G.1 Introduction.. 351

G.2 Summary... 351

G.3 References to Model-Specific Information... 352

Back Matter

Glossary .. 357

Bibliography .. 363

General References.. 363

Sun Microelectronics (SME) Publications .. 364

How to Contact SME... 365

On Line Resources... 365

Index .. 367
Sun Microelectronics
vii

UltraSPARC User’s Manual
Sun Microelectronics
viii

Preface
Overview

Welcome to the UltraSPARC User’s Manual. This book contains information about

the architecture and programming of UltraSPARC, Sun Microsystems’ family of

SPARC-V9-compliant processors. It describes the UltraSPARC-I and

UltraSPARC-II processor implementasions.

This book contains information on:

• The UltraSPARC system architecture

• The components that make up an UltraSPARC processor

• Memory and low-level system management, including detailed information

needed by operating system programmers

• Extensions to and implementation-dependencies of the SPARC-V9 architecture

• Techniques for managing the pipeline and for producing optimized code

A Brief History of SPARC

SPARC stands for Scalable Processor ARChitecture, which was first announced in

1987. Unlike more traditional processor architectures, SPARC is an open stan-

dard, freely available through license from SPARC International, Inc. Any compa-

ny that obtains a license can manufacture and sell a SPARC-compliant processor.

By the early 1990s SPARC processors we available from over a dozen different

vendors, and over 8,000 SPARC-compliant applications had been certified.
Sun Microelectronics
9

UltraSPARC User’s Manual
In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Ver-
sion 9, which defined a powerful 64-bit enhancement to the SPARC architecture.

SPARC-V9 provided support for:

• 64-bit virtual addresses and 64-bit integer data

• Fault tolerance

• Fast trap handling and context switching

• Big- and little-endian byte orders

UltraSPARC is the first family of SPARC-V9-compliant processors available from

Sun Microsystems, Inc.

How to Use This Book
This book is a companion to The SPARC Architecture Manual, Version 9, which is

available from many technical bookstores or directly from its copyright holder:

SPARC International, Inc.

535 Middlefield Road, Suite 210

Menlo Park, CA 94025

(415) 321-8692

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC-V9 architecture. Since SPARC-V9 is an open architecture, many of the im-

plementation decisions have been left to the manufacturers of SPARC-compliant

processors. These “implementation dependencies” are introduced in The SPARC
Architecture Manual, Version 9; they are numbered throughout the body of the text,

and are cross referenced in Appendix C that book.

This book, the UltraSPARC User’s Manual, describes the UltraSPARC-I and

UltraSPARC-II implementations of the SPARC-V9 architecture. It provides specif-

ic information about UltraSPARC processors, including how each SPARC-V9 im-

plementation dependency was resolved. (See Chapter 14, “Implementation

Dependencies,” for specific information.) This manual also describes extensions

to SPARC-V9 that are available (currently) only on UltraSPARC processors.

A great deal of background information and a number of architectural concepts

are not contained in this book. You will find cross references to The SPARC Archi-
tecture Manual, Version 9 located throughout this book. You should have a copy of

that book at hand whenever you are working with the UltraSPARC User’s Manual.
For detailed information about the electrical and mechanical characteristics of the

processor, including pin and pad assignments, consult the UltraSPARC-I Data
Sheet. The “Bibliography” on page 363 describes how to obtain the data sheet.
Sun Microelectronics
10

Preface
Textual Conventions

This book uses the same textual conventions as The SPARC Architecture Manual,
Version 9. They are summarized here for convenience.

Fonts are used as follows:

• Italic font is used for register names, instruction fields, and read-only register

fields.

• Typewriter font is used for literals and software examples.

• Bold font is used for emphasis.

• UPPER CASE items are acronyms, instruction names, or writable register

fields.

• Italic sans serif font is used for exception and trap names.

• Underbar characters (_) join words in register, register field, exception, and

trap names. Such words can be split across lines at the underbar without an

intervening hyphen.

The following notational conventions are used:

• Square brackets ‘[]’ indicate a numbered register in a register file.

• Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit

numbers within a field.

• Curly braces ‘{ }’ are used to indicate textual substitution.

• The symbol designates concatenation of bit vectors. A comma ‘,’ on the left

side of an assignment separates quantities that are concatenated for the

purpose of assignment.

Contents

This manual has the following organization.

Section I, “Introducing UltraSPARC,”presents an overview of the UltraSPARC ar-

chitecture. Section I contains the following chapters:

• Chapter 1, “UltraSPARC Basics,” describes the architecture in general terms

and introduces its components.

• Chapter 2, “Processor Pipeline,” describes UltraSPARC’s 9-stage pipeline.

• Chapter 3, “Cache Organization,” describes the UltraSPARC caches.
Sun Microelectronics
11

UltraSPARC User’s Manual
• Chapter 4, “Overview of the MMU, “ describes the UltraSPARC MMU, its

architecture, how it performs virtual address translation, and how it is

programmed.

Section II, “Going Deeper,” presents detailed information about UltraSPARC ar-

chitecture and programming. Section II contains the following chapters:

• Chapter 5, “Cache and Memory Interactions,” describes cache coherency and

cache flushing.

• Chapter 6, “MMU Internal Architecture,” describes in detail the internal

architecture of the MMU and how to program it.

• Chapter 7, “UltraSPARC External Interfaces,” describes in detail the external

transactions that UltraSPARC performs, including interactions with the caches

and the SYSADDR bus, and interrupts.

• Chapter 8, “Address Spaces, ASIs, ASRs, and Traps,” describes the address

spaces that UltraSPARC supports, and how it handles traps.

• Chapter 9, “Interrupt Handling,” describes how UltraSPARC processes

interrupts.

• Chapter 10, “Reset and RED_state,” describes how UltraSPARC handles the

various SPARC-V9 reset conditions, and how it implements RED_state.

• Chapter 11, “Error Handling,” discusses how UltraSPARC handles system

errors and describes the available error status registers.

Section III, “UltraSPARC and SPARC-V9,” describes UltraSPARC as an imple-

mentation of the SPARC-V9 architecture. Section III contains the following chap-

ters:

• Chapter 12, “Instruction Set Summary,” lists all supported instructions,

including both SPARC-V9 core instructions and UltraSPARC extended

instructions.

• Chapter 13, “UltraSPARC Extended Instructions,” contains detailed

documentation of the extended instructions that UltraSPARC has added to the

SPARC-V9 instruction set.

• Chapter 14, “Implementation Dependencies,” discusses how UltraSPARC has

resolved each of the implementation-dependencies defined by the SPARC-V9

architecture.
Sun Microelectronics
12

Preface
• Chapter 15, “SPARC-V9 Memory Models,” describes the supported memory

models (which are documented fully in The SPARC Architecture Manual,
Version 9). Low-level programmers and operating system implementors

should study this chapter to understand how their code will interact with the

UltraSPARC cache and memory systems.

Section IV, “Producing Optimized Code,” contains detailed information for as-

sembly language programmers and compiler developers. Section IV contains the

following chapters:

• Chapter 16, “Code Generation Guidelines,” contains detailed information

about generating optimum UltraSPARC code.

• Chapter 17, “Grouping Rules and Stalls,”describes instruction

interdependencies and optimal instruction ordering.

Appendixes contain low-level technical material or information not needed for a

general understanding of the architecture. The manual contains the following ap-

pendixes:

• Appendix A, “Debug and Diagnostics Support,” describes diagnostics

registers and capabilities.

• Appendix B, “Performance Instrumentation,” describes built-in capabilities to

measure UltraSPARC performance.

• Appendix C, “Power Management,” describes UltraSPARC’s Energy Star

compliant power-down mode.

• Appendix D, “IEEE 1149.1 Scan Interface,” contains information about the

scan interface for UltraSPARC.

• Appendix E, “Pin and Signal Descriptions,” contains general information

about the pins and signals of the UltraSPARC and its components.

• Appendix F, “ASI Names,” contains an alphabetical listing of the names and

suggested macro syntax for all supported ASIs.

A Glossary, Bibliography, and Index complete the book.
Sun Microelectronics
13

UltraSPARC User’s Manual
Sun Microelectronics
14

Section I — IntroducingUltraSPARC
1. UltraSPARC Basics ... 3

2. Processor Pipeline ... 11

3. Cache Organization .. 17

4. Overview of the MMU.. 21
Sun Microelectronics
1

UltraSPARC User’s Manual
Sun Microelectronics
2

UltraSPARC Basics 1
1.1 Overview

UltraSPARC is a high-performance, highly integrated superscalar processor im-

plementing the 64-bit SPARC-V9 RISC architecture. UltraSPARC is capable of sus-
taining the execution of up to four instructions per cycle, even in the presence of

conditional branches and cache misses. This is due mainly to the asynchronous

aspect of the units feeding instructions and data to the rest of the pipeline. In-

structions predicted to be executed are issued in program order to multiple func-

tional units, execute in parallel and, for added parallelism, can complete out-of-

order. In order to further increase the number of instructions executed per cycle

(IPC), instructions from two basic blocks (that is, instructions before and after a

conditional branch) can be issued in the same group.

UltraSPARC is a full implementation of the 64-bit SPARC-V9 architecture. It sup-

ports a 44-bit virtual address space and a 41-bit physical address space. The core

instruction set has been extended to include graphics instructions that provide

the most common operations related to two-dimensional image processing, two-

and three-dimensional graphics and image compression algorithms, and parallel

operations on pixel data with 8- and 16-bit components. Support for high band-

width bcopy is also provided through block load and block store instructions.

1.2 Design Philosophy

The execution time of an application is the product of three factors: the number of

instructions generated by the compiler, the average number of cycles required per

instruction, and the cycle time of the processor. The architecture and implementa-

tion of UltraSPARC, coupled with new compiler techniques, makes it possible to

reduce each component while not deteriorating the other two.
Sun Microelectronics
3

1. UltraSPARC Basics
The number of instructions for a given task depends on the instruction set and on

compiler optimizations (dead code elimination, constant propagation, profiling

for code motion, and so on). Since it is based on the SPARC-V9 architecture,

UltraSPARC offers features that can help reduce the total instruction count:

• 64-bit integer processing

• Additional floating-point registers (beyond the number offered in SPARC-V8),

which can be used to eliminate floating-point loads and stores

• Enhanced trap model with alternate global registers

The average number of cycles per instruction (CPI) depends on the architecture

of the processor and on the ability of the compiler to take advantage of the hard-

ware features offered. The UltraSPARC execution units (ALUs, LD/ST, branch,

two floating-point, and two graphics) allow the CPI to be as low as 0.25 (four in-

structions per cycle). To support this high execution bandwidth, sophisticated

hardware is provided to supply:

1. Up to four instructions per cycle, even in the presence of conditional

branches

2. Data at a rate of 16 bytes-per-cycle from the external cache to the data

cache, or 8 bytes-per-cycle into the register files.

To reduce instruction dependency stalls, UltraSPARC has short latency opera-

tions and provides direct bypassing between units or within the same unit. The

impact of cache misses, usually a large contributor to the CPI, is reduced signifi-

cantly through the use of de-coupled units (prefetch unit, load buffer, and store

buffer), which operate asynchronously with the rest of the pipeline.

Other features such as a fully pipelined interface to the external cache (E-Cache)

and support for speculative loads, coupled with sophisticated compiler tech-

niques such as software pipelining and cross-block scheduling also reduce the

CPI significantly.

A balanced architecture must be able to provide a low CPI without affecting the

cycle time. Several of UltraSPARC’s architectural features, coupled with an ag-

gressive implementation and state-of-the-art technology, have made it possible to

achieve a short cycle time (see Table 1-1). The pipeline is organized so that large

scalarity (four), short latencies, and multiple bypasses do not affect the cycle time

significantly.

Table 1-1 Implementation Technologies and Cycle Times

UltraSPARC-I UltraSPARC-II

Technology 0.5 µ CMOS 0.35 µ CMOS

Cycle Time 7 ns and faster 4 ns and faster
Sun Microelectronics
4

1. UltraSPARC Basics
1.3 Component Overview

Figure 1-1 shows a block diagram of the UltraSPARC processor.

Figure 1-1 UltraSPARC Block Diagram

The block diagram illustrates the following components:

• Prefetch and Dispatch Unit (PDU), including logic for branch prediction

• 16Kb Instruction Cache (I-Cache)

• Memory Management Unit (MMU), containing a 64-entry Instruction

Translation Lookaside Buffer (iTLB) and a 64-entry Data Translation

Lookaside Buffer (dTLB)

Ext.
Cache
RAM

Prefetch and Dispatch Unit (PDU)

Integer Execution Unit (IEU)

Floating Point Unit (FPU)

Graphics Unit (GRU)

Instruction Cache and Buffer

Grouping Logic Integer Reg and Annex

FP
Reg

FP Multiply

FP Add
FP Divide

Load / Store Unit (LSU)

Data Load Store

External Cache Unit (ECU)

Memory Management Unit (MMU)

Memory Interface Unit (MIU)

System Interconnect

Cache Buffer Buffer

iTLB dTLB
Sun Microelectronics
5

UltraSPARC User’s Manual
• Integer Execution Unit (IEU) with two Arithmetic and Logic Units (ALUs)

• Load/Store Unit (LSU) with a separate address generation adder

• Load buffer and store buffer, decoupling data accesses from the pipeline

• A 16Kb Data Cache (D-Cache)

• Floating-Point Unit (FPU) with independent add, multiply, and divide/square

root sub-units

• Graphics Unit (GRU) with two independent execution pipelines

• External Cache Unit (ECU), controlling accesses to the External Cache

(E-Cache)

• Memory Interface Unit (MIU), controlling accesses to main memory and I/O

space

1.3.1 Prefetch and Dispatch Unit (PDU)

The prefetch and dispatch unit fetches instructions before they are actually need-

ed in the pipeline, so the execution units do not starve for instructions. Instruc-

tions can be prefetched from all levels of the memory hierarchy; that is, from the

instruction cache, the external cache, and main memory. In order to prefetch

across conditional branches, a dynamic branch prediction scheme is implemented

in hardware. The outcome of a branch is based on a two-bit history of the branch.

A “next field” associated with every four instructions in the instruction cache

(I-Cache) points to the next I-Cache line to be fetched. The use of the next field

makes it possible to follow taken branches and to provide nearly the same in-

struction bandwidth achieved while running sequential code. Prefetched instruc-

tions are stored in the Instruction Buffer until they are sent to the rest of the

pipeline; up to 12 instructions can be buffered.

1.3.2 Instruction Cache (I-Cache)

The instruction cache is a 16 Kbyte two-way set associative cache with 32 byte

blocks. The cache is physically indexed and contains physical tags. The set is pre-

dicted as part of the “next field;” thus, only the index bits of an address (13 bits,

which matches the minimum page size) are needed to address the cache. The

I-Cache returns up to 4 instructions from an 8-instruction-wide cache line.
Sun Microelectronics
6

1. UltraSPARC Basics
1.3.3 Integer Execution Unit (IEU)

The IEU contains the following components:

• Two ALUs

• A multi-cycle integer multiplier

• A multi-cycle integer divider

• Eight register windows

• Four sets of global registers (normal, alternate, MMU, and interrupt globals)

• The trap registers (See Table 1-2 for supported trap levels)

1.3.4 Floating-Point Unit (FPU)

The FPU is partitioned into separate execution units, which allows the

UltraSPARC processor to issue and execute two floating-point instructions per

cycle. Source and result data are stored in the 32-entry register file, where each

entry can contain a 32-bit value or a 64-bit value. Most instructions are fully pipe-

lined, (with a throughput of one per cycle), have a latency of three, and are not

affected by the precision of the operands (same latency for single- or double-pre-

cision). The divide and square root instructions are not pipelined and take 12/22

cycles (single/double) to execute but they do not stall the processor. Other in-

structions, following the divide/square root can be issued, executed, and retired

to the register file before the divide/square root finishes. A precise exception

model is maintained by synchronizing the floating-point pipe with the integer

pipe and by predicting traps for long latency operations. See Section 7.3.1, “Pre-

cise Traps,” in The SPARC Architecture Manual, Version 9.

1.3.5 Graphics Unit (GRU)

UltraSPARC introduces a comprehensive set of graphics instructions that provide

fast hardware support for two-dimensional and three-dimensional image and

video processing, image compression, audio processing, etc. 16-bit and 32-bit par-

titioned add, boolean, and compare are provided. 8-bit and 16-bit partitioned

multiplies are supported. Single cycle pixel distance, data alignment, packing,

and merge operations are all supported in the GRU.

Table 1-2 Supported Trap Levels

UltraSPARC-I UltraSPARC-II

MAXTL 4 4

Trap Levels 5 5
Sun Microelectronics
7

UltraSPARC User’s Manual
1.3.6 Memory Management Unit (MMU)

The MMU provides mapping between a 44-bit virtual address and a 41-bit phys-

ical address. This is accomplished through a 64-entry iTLB for instructions and a

64-entry dTLB for data; both TLBs are fully associative. UltraSPARC provides

hardware support for a software-based TLB miss strategy. A separate set of glo-

bal registers is available to process MMU traps. Page sizes of 8Kb (13-bit offset),

64Kb (16-bit offset), 512Kb (19-bit offset), and 4Mb (22-bit offset) are supported.

1.3.7 Load/Store Unit (LSU)

The LSU is responsible for generating the virtual address of all loads and stores

(including atomics and ASI loads), for accessing the D-Cache, for decoupling

load misses from the pipeline through the Load Buffer, and for decoupling stores

through the Store Buffer. One load or one store can be issued per cycle.

1.3.8 Data Cache (D-Cache)

The D-Cache is a write-through, non-allocating, 16Kb direct-mapped cache with

two 16-byte sub-blocks per line. It is virtually indexed and physically tagged

(VIPT). The tag array is dual ported, so tag updates due to line fills do not collide

with tag reads for incoming loads. Snoops to the D-Cache use the second tag

port, so they do not delay incoming loads.

1.3.9 External Cache Unit (ECU)

The main role of the ECU is to handle I-Cache and D-Cache misses efficiently.

The ECU can handle one access per cycle to the External Cache (E-Cache). Ac-

cesses to the E-Cache are pipelined, which effectively makes the E-Cache part of

the instruction pipeline. Programs with large data sets can keep data in the

E-Cache and can schedule instructions with load latencies based on E-Cache la-

tency. Floating-point code can use this feature to effectively hide D-Cache misses.

Table 1-5 on page 10 shows the E-Cache sizes that each UltraSPARC model sup-

ports. Regardless of model, however, the E-Cache line size is always 64 bytes.

UltraSPARC uses a MOESI (Modified, Own, Exclusive, Shared, Invalid) protocol

to maintain coherence across the system.
Sun Microelectronics
8

1. UltraSPARC Basics
The ECU provides overlap processing during load and store misses. For instance,

stores that hit the E-Cache can proceed while a load miss is being processed. The

ECU can process reads and writes indiscriminately, without a costly turn-around

penalty (only 2 cycles). Finally, the ECU handles snoops.

Block loads and block stores, which load/store a 64-byte line of data from mem-

ory to the floating-point register file, are also processed efficiently by the ECU,

providing high transfer bandwidth without polluting the E-Cache.

1.3.9.1 E-Cache SRAM Modes

Different UltraSPARC models support various E-Cache SRAM configurations us-

ing one or more SRAM “modes.” Table 1-5 shows the modes that each

UltraSPARC model supports. The modes are described below.

1–1–1 (Pipelined) Mode:

The E-Cache SRAMS have a cycle time equal to the processor cycle time. The

name “1–1–1” indicates that it takes one processor clock to send the address, one

to access the SRAM array, and one to return the E-Cache data. 1–1–1 mode has a

3 cycle pin-to-pin latency and provides the best possible E-Cache throughput.

2–2 (Register-Latched) Mode:

The E-Cache SRAMS have a cycle time equal to one-half the processor cycle time.

The name “2–2” indicates that it takes two processor clocks to send the address

and two clocks to access and return the E-Cache data. 2–2 mode has a 4 cycle pin-

to-pin latency, which provides lower E-Cache throughput at reduced cost.

Table 1-3 Supported E-Cache Sizes

E-Cache Size UltraSPARC-I UltraSPARC-II

512 Kb ✓ ✓

1 Mb ✓ ✓

2 Mb ✓ ✓

4 Mb ✓ ✓

8 Mb ✓

16 Mb ✓

Table 1-4 Supported E-Cache SRAM Modes

SRAM Mode UltraSPARC-I UltraSPARC-II

1–1–1 ✓ ✓

2–2 ✓
Sun Microelectronics
9

UltraSPARC User’s Manual
1.3.10 Memory Interface Unit (MIU)

The MIU handles all transactions to the system controller; for example, external

cache misses, interrupts, snoops, writebacks, and so on. The MIU communicates

with the system at some model-dependent fraction of the UltraSPARC frequency.

Table 1-5 shows the possible ratios between the processor and system clock fre-

quencies for each UltraSPARC model.

1.4 UltraSPARC Subsystem

Figure 1-2 shows a complete UltraSPARC subsystem, which consists of the

UltraSPARC processor, synchronous SRAM components for the E-Cache tags and

data, and two UltraSPARC Data Buffer (UDB) chips. The UDBs isolate the

E-Cache from the system, provide data buffers for incoming and outgoing system

transactions, and provide ECC generation and checking.

Figure 1-2 UltraSPARC Subsystem

Table 1-5 Model-Dependent Processor : System Clock Frequency Ratios

Frequency Ratio UltraSPARC-I UltraSPARC-II

2 : 1 ✓ ✓

3 : 1 ✓ ✓

4 : 1 ✓

E-Cache Data SRAM

UDB

E-Cache Tag SRAM

System
Data Bus

System
Address Bus

E-Cache Data

Tag Data

Tag Address

Data Address

UltraSPARC
Processor
Sun Microelectronics
10

Processor Pipeline 2
2.1 Introductions
UltraSPARC contains a 9-stage pipeline. Most instructions go through the pipe-

line in exactly 9 stages. The instructions are considered terminated after they go

through the last stage (W), after which changes to the processor state are irrevers-

ible. Figure 2-1 shows a simplified diagram of the integer and floating-point pipe-

line stages.

Figure 2-1 UltraSPARC Pipeline Stages (Simplified)

Three additional stages are added to the integer pipeline to make it symmetrical

with the floating-point pipeline. This simplifies pipeline synchronization and ex-

ception handling. It also eliminates the need to implement a floating-point queue.

Floating-point instructions with a latency greater than three (divide, square root,

and inverse square root) behave differently than other instructions; the pipe is

“extended” when the instruction reaches stage N1. See Chapter 16, “Code Gener-

ation Guidelines” for more information. Memory operations are allowed to pro-

ceed asynchronously with the pipeline in order to support latencies longer than

the latency of the on-chip D-Cache.

Fetch Decode Group Execute Cache N1 N2 N3 Write

Integer Pipeline

Register X1 X2 X3

Floating-Point &
Graphics Pipeline
Sun Microelectronics
11

UltraSPARC User’s Manual
2.2 Pipeline Stages
This section describes each pipeline stage in detail. Figure 2-2 illustrates the pipe-

line stages.

Figure 2-2 UltraSPARC Pipeline Stages (Detail)

X1

IU
 R

eg
is

te
r

F
ile

E C N1 N2G

D-Cache

TLB

FP add

F
P

 R
F

 3
2

x
64

IST_data

Icc

FPST_data

In
st

ru
ct

io
n

B
uf

fe
rs

A
nn

ex

F/D

FPU

IEU

PDU

G ALU

FP mul
G mul GRU

address bus

data bus

instruction bus

LSU
Tag

Tag Check

Hit

al
ig

n
VA

PA

N3 W

(Results in Annex)

ECU

LDQ/STQ

D-Cache
Data

R X2 X3

SB
Sun Microelectronics
12

2. Processor Pipeline
2.2.1 Stage 1: Fetch (F) Stage

Prior to their execution, instructions are fetched from the Instruction Cache

(I-Cache) and placed in the Instruction Buffer, where eventually they will be se-

lected to be executed. Accessing the I-Cache is done during the F Stage. Up to

four instructions are fetched along with branch prediction information, the pre-

dicted target address of a branch, and the predicted set of the target. The high

bandwidth provided by the I-Cache (4 instructions/cycle) allows UltraSPARC to

prefetch instructions ahead of time based on the current instruction flow and on

branch prediction. Providing a fetch bandwidth greater than or equal to the max-

imum execution bandwidth assures that, for well behaved code, the processor

does not starve for instructions. Exceptions to this rule occur when branches are

hard to predict, when branches are very close to each other, or when the I-Cache

miss rate is high.

2.2.2 Stage 2: Decode (D) Stage

After being fetched, instructions are pre-decoded and then sent to the Instruction

Buffer. The pre-decoded bits generated during this stage accompany the instruc-

tions during their stay in the Instruction Buffer. Upon reaching the next stage

(where the grouping logic lives) these bits speed up the parallel decoding of up

to 4 instructions.

While it is being filled, the Instruction Buffer also presents up to 4 instructions to

the next stage. A pair of pointers manage the Instruction Buffer, ensuring that as

many instructions as possible are presented in order to the next stage.

2.2.3 Stage 3: Grouping (G) Stage

The G Stage logic’s main task is to group and dispatch a maximum of four valid

instructions in one cycle. It receives a maximum of four valid instructions from

the Prefetch and Dispatch Unit (PDU), it controls the Integer Core Register File

(ICRF), and it routes valid data to each integer functional unit. The G Stage sends

up to two floating-point or graphics instructions out of the four candidates to the

Floating-Point and Graphics Unit (FGU). The G Stage logic is responsible for

comparing register addresses for integer data bypassing and for handling pipe-

line stalls due to interlocks.
Sun Microelectronics
13

UltraSPARC User’s Manual
2.2.4 Stage 4: Execution (E) Stage

Data from the integer register file is processed by the two integer ALUs during

this cycle (if the instruction group includes ALU operations). Results are comput-

ed and are available for other instructions (through bypasses) in the very next cy-

cle. The virtual address of a memory operation is also calculated during the E

Stage, in parallel with ALU computation.

FLOATING-POINT AND GRAPHICS UNIT: The Register (R) Stage of the FGU. The

floating-point register file is accessed during this cycle. The instructions are also

further decoded and the FGU control unit selects the proper bypasses for the cur-

rent instructions.

2.2.5 Stage 5: Cache Access (C) Stage

The virtual address of memory operations calculated in the E Stage is sent to the

tag RAM to determine if the access (load or store type) is a hit or a miss in the

D-Cache. In parallel the virtual address is sent to the data MMU to be translated

into a physical address. On a load when there are no other outstanding loads, the

data array is accessed so that the data can be forwarded to dependent instruc-

tions in the pipeline as soon as possible.

ALU operations executed in the E Stage generate condition codes in the C Stage.

The condition codes are sent to the PDU, which checks whether a conditional

branch in the group was correctly predicted. If the branch was mispredicted, ear-

lier instructions in the pipe are flushed and the correct instructions are fetched.

The results of ALU operations are not modified after the E Stage; the data merely

propagates down the pipeline (through the annex register file), where it is avail-

able for bypassing for subsequent operations.

FLOATING-POINT AND GRAPHICS UNIT: The X1 Stage of the FGU. Floating-point and

graphics instructions start their execution during this stage. Instructions of laten-

cy one also finish their execution phase during the X1 Stage.

2.2.6 Stage 6: N1 Stage

A data cache miss/hit or a TLB miss/hit is determined during the N1 Stage. If a

load misses the D-Cache, it enters the Load Buffer. The access will arbitrate for

the E-Cache if there are no older unissued loads. If a TLB miss is detected, a trap

will be taken and the address translation is obtained through a software routine.
Sun Microelectronics
14

2. Processor Pipeline
The physical address of a store is sent to the Store Buffer during this stage. To

avoid pipeline stalls when store data is not immediately available, the store ad-

dress and data parts are decoupled and sent to the Store Buffer separately.

FLOATING-POINT AND GRAPHICS UNIT: The X2 stage of the FGU. Execution contin-

ues for most operations.

2.2.7 Stage 7: N2 Stage

Most floating-point instructions finish their execution during this stage. After N2,

data can be bypassed to other stages or forwarded to the data portion of the Store

Buffer. All loads that have entered the Load Buffer in N1 continue their progress

through the buffer; they will reappear in the pipeline only when the data comes

back. Normal dependency checking is performed on all loads, including those in

the load buffer.

FLOATING-POINT AND GRAPHICS UNIT: The X3 stage of the FGU.

2.2.8 Stage 8: N3 Stage

UltraSPARC resolves traps at this stage.

2.2.9 Stage 9: Write (W) Stage

All results are written to the register files (integer and floating-point) during this

stage. All actions performed during this stage are irreversible. After this stage, in-

structions are considered terminated.
Sun Microelectronics
15

UltraSPARC User’s Manual
Sun Microelectronics
16

Cache Organization 3
3.1 Introduction

3.1.1 Level-1 Caches

UltraSPARC’s Level-1 D-Cache is virtually indexed, physically tagged (VIPT).

Virtual addresses are used to index into the D-Cache tag and data arrays while

accessing the D-MMU (that is, the dTLB). The resulting tag is compared against

the translated physical address to determine D-Cache hits.

A side-effect inherent in a virtual-indexed cache is address aliasing; this issue is

addressed in Section 5.2.1, “Address Aliasing Flushing,” on page 28.

UltraSPARC’s Level-1 I-Cache is physically indexed, physically tagged (PIPT).

The lowest 13 bits of instruction addresses are used to index into the I-Cache tag

and data arrays while accessing the I-MMU (that is, the iTLB). The resulting tag

is compared against the translated physical address to determine I-Cache hits.

3.1.1.1 Instruction Cache (I-Cache)

The I-Cache is a 16 Kb pseudo-two-way set-associative cache with 32-byte blocks.

The set is predicted based on the next fetch address; thus, only the index bits of

an address are necessary to address the cache (that is, the lowest 13 bits, which

matches the minimum page size of 8Kb). Instruction fetches bypass the instruc-

tion cache under the following conditions:

• When the I-Cache enable or I-MMU enable bits in the LSU_Control_Register

are clear (see Section A.6, “LSU_Control_Register,” on page 306)

• When the processor is in RED_state, or
Sun Microelectronics
17

UltraSPARC User’s Manual
• When the I-MMU maps the fetch as noncacheable.

The instruction cache snoops stores from other processors or DMA transfers, but

it is not updated by stores in the same processor, except for block commit stores

(see Section 13.6.4, “Block Load and Store Instructions,” on page 230). The

FLUSH instruction can be used to maintain coherency. Block commit stores up-

date the I-Cache but do not flush instructions that have already been prefetched

into the pipeline. A FLUSH, DONE, or RETRY instruction can be used to flush

the pipeline. For block copies that must maintain I-Cache coherency, it is more ef-

ficient to use block commit stores in the loop, followed by a single FLUSH in-

struction to flush the pipeline.

Note: The size of each I-Cache set is the same as the page size in UltraSPARC-I

and UltraSPARC-II; thus, the virtual index bits equal the physical index bits.

3.1.1.2 Data Cache (D-Cache)

The D-Cache is a write-through, nonallocating-on-write-miss 16-Kb direct

mapped cache with two 16-byte sub-blocks per line. Data accesses bypass the

data cache when the D-Cache enable bit in the LSU_Control_Register is clear (see

Section A.6, “LSU_Control_Register,” on page 306). Load misses will not allocate

in the D-Cache if the D-MMU enable bit in the LSU_Control_Register is clear or

the access is mapped by the D-MMU as virtual noncacheable.

Note: A noncacheable access may access data in the D-Cache from an earlier

cacheable access to the same physical block, unless the D-Cache is disabled.

Software must flush the D-Cache when changing a physical page from cacheable

to noncacheable (see Section 5.2, “Cache Flushing”).

3.1.2 Level-2 PIPT External Cache (E-Cache)

UltraSPARC’s level-2 (external) cache (the E-Cache) is physically indexed, physi-

cally tagged (PIPT). This cache has no references to virtual address and context

information. The operating system needs no knowledge of such caches after ini-

tialization, except for stable storage management and error handling.

Memory accesses must be cacheable in the E-Cache to allow use of UltraSPARC’s

ECC checking. As a result, there is no E-Cache enable bit in the

LSU_Control_Register.
Sun Microelectronics
18

3. Cache Organization
Instruction fetches bypass the E-Cache when:

• The I-MMU is disabled, or

• The processor is in RED_state, or

• The access is mapped by the I-MMU as physically noncacheable

Data accesses bypass the E-Cache when:

• The D-MMU enable bit (DM) in the LSU_Control_Register is clear, or

• The access is mapped by the D-MMU as nonphysical cacheable (unless

ASI_PHYS_USE_EC is used).

The system must provide a noncacheable, ECC-less scratch memory for use of the

booting code until the MMUs are enabled.

The E-Cache is a unified, write-back, allocating, direct-mapped cache. The

E-Cache always includes the contents of the I-Cache and D-Cache. The E-Cache

size is model dependent (see Table 1-5 on page 10); its line size is 64 bytes.

Block loads and block stores, which load or store a 64-byte line of data from

memory to the floating-point register file, do not allocate into the E-Cache, in or-

der to avoid pollution.
Sun Microelectronics
19

UltraSPARC User’s Manual
Sun Microelectronics
20

Overview of the MMU 4
4.1 Introduction
This chapter describes the UltraSPARC Memory Management Unit as it is seen by

the operating system software. The UltraSPARC MMU conforms to the require-

ments set forth in The SPARC Architecture Manual, Version 9.

Note: The UltraSPARC MMU does not conform to the SPARC-V8 Reference

MMU Specification. In particular, the UltraSPARC MMU supports a 44-bit virtual

address space, software TLB miss processing only (no hardware page table walk),

simplified protection encoding, and multiple page sizes. All of these differ from

features required of SPARC-V8 Reference MMUs.

4.2 Virtual Address Translation
The UltraSPARC MMU supports four page sizes: 8 Kb, 64 Kb, 512 Kb, and 4 Mb.

It supports a 44-bit virtual address space, with 41 bits of physical address. During

each processor cycle the UltraSPARC MMU provides one instruction and one

data virtual-to-physical address translation. In each translation, the virtual page

number is replaced by a physical page number, which is concatenated with the

page offset to form the full physical address, as illustrated in Figure 4-1 on page

22. (This figure shows the full 64-bit virtual address, even though UltraSPARC

supports only 44 bits of VA.)
Sun Microelectronics
21

UltraSPARC User’s Manual
Figure 4-1 Virtual-to-physical Address Translation for all Page Sizes

UltraSPARC implements a 44-bit virtual address space in two equal halves at the

extreme lower and upper portions of the full 64-bit virtual address space. Virtual

addresses between 0000 0800 0000 000016 and FFFF F7FF FFFF FFFF16, inclusive,

are termed “out of range” for UltraSPARC and are illegal. (In other words, virtual

address bits VA<63:43> must be either all zeros or all ones.) Figure 4-2 on page 23

illustrates the UltraSPARC virtual address space.

0

0

12

1213

1363

40

8K-byte Virtual Page Number

8K-byte Physical Page Number

Page Offset

Page Offset

0

0

15

1516

1663

40

64K-byte Virtual Page Number

64K-byte Physical Page Number

Page Offset

Page Offset

0

0

18

1819

1963

40

512K-byte Virtual Page Number

512K-byte PPN

Page Offset

Page Offset

VA

PA

PA

PA

VA

VA

8 Kb

64 Kb

512 Kb

0

0

21

2122

2263

40

4M-byte Virtual Page Number

4M-byte PPN

Page Offset

Page Offset PA

VA

4 Mb

MMU

MMU

MMU

MMU
Sun Microelectronics
22

4. Overview of the MMU
Figure 4-2 UltraSPARC’s 44-bit Virtual Address Space, with Hole (Same as Figure 14-2)

Note: Throughout this document, when virtual address fields are specified as

64-bit quantities, they are assumed to be sign-extended based on VA<43>.

The operating system maintains translation information in a data structure called

the Software Translation Table. The I- and D-MMU each contain a hardware

Translation Lookaside Buffer (iTLB and dTLB); these act as independent caches of

the Software Translation Table, providing one-cycle translation for the more fre-

quently accessed virtual pages.

Figure 4-3 on page 24 shows a general software view of the UltraSPARC MMU.

The TLBs, which are part of the MMU hardware, are small and fast. The Software

Translation Table, which is kept in memory, is likely to be large and complex. The

Translation Storage Buffer (TSB), which acts like a direct-mapped cache, is the in-

terface between the two. The TSB can be shared by all processes running on a

processor, or it can be process specific. The hardware does not require any partic-

ular scheme.

The term “TLB hit” means that the desired translation is present in the MMU’s

on-chip TLB. The term “TLB miss” means that the desired translation is not

present in the MMU’s on-chip TLB. On a TLB miss the MMU immediately traps

to software for TLB miss processing. The TLB miss handler has the option of fill-

ing the TLB by any means available, but it is likely to take advantage of the TLB

miss support features provided by the MMU, since the TLB miss handler is time

critical code. Hardware support is described in Section 6.3.1, “Hardware Support

for TSB Access,” on page 45.

FFFF FFFF FFFF FFFF

FFFF F800 0000 0000

0000 0000 0000 0000

0000 07FF FFFF FFFF

Out of Range VA
(VA “Hole”)

FFFF F7FF FFFF FFFF

0000 0800 0000 0000
Sun Microelectronics
23

UltraSPARC User’s Manual
Figure 4-3 Software View of the UltraSPARC MMU

Aliasing between pages of different size (when multiple VAs map to the same

PA) may take place, as with the SPARC-V8 Reference MMU. The reverse case,

when multiple mappings from one VA/context to multiple PAs produce a multi-

ple TLB match, is not detected in hardware; it produces undefined results.

Note: The hardware ensures the physical reliability of the TLB on multiple

matches.

Translation

Look-aside

Buffers

Translation

Buffer

Software

Translation

Table

MMU Memory O/S Data Structure

Storage
Sun Microelectronics
24

Section II — Going Deeper
5. Cache and Memory Interactions .. 27

6. MMU Internal Architecture ... 41

7. UltraSPARC External Interfaces ... 73

8. Address Spaces, ASIs, ASRs, and Traps .. 145

9. Interrupt Handling ... 161

10. Reset and RED_state .. 169

11. Error Handling .. 175
Sun Microelectronics
25

UltraSPARC User’s Manual
Sun Microelectronics
26

Cache and Memory Interactions 5
5.1 Introduction

This chapter describes various interactions between the caches and memory, and

the management processes that an operating system must perform to maintain

data integrity in these cases. In particular, it discusses:

• When and how to invalidate one or more cache entries

• The differences between cacheable and non-cacheable accesses

• The ordering and synchronization of memory accesses

• Accesses to addresses that cause side effects (I/O accesses)

• Non-faulting loads

• Instruction prefetching

• Load and store buffers

This chapter only address coherence in a uniprocessor environment. For more in-

formation about coherence in multi-processor environments, see Chapter 15,

“SPARC-V9 Memory Models.”

5.2 Cache Flushing

Data in the level-1 (read-only or write-through) caches can be flushed by invali-

dating the entry in the cache. Modified data in the level-2 (writeback) cache must

be written back to memory when flushed.
Sun Microelectronics
27

UltraSPARC User’s Manual
Cache flushing is required in the following cases:

I-Cache:
Flush is needed before executing code that is modified by a local store instruction

other than block commit store, see Section 3.1.1.1, “Instruction Cache (I-Cache).”

This is done with the FLUSH instruction or using ASI accesses. See Section A.7,

“I-Cache Diagnostic Accesses,” on page 309. When ASI accesses are used, soft-

ware must ensure that the flush is done on the same processor as the stores that

modified the code space.

D-Cache:
Flush is needed when a physical page is changed from (virtually) cacheable to

(virtually) noncacheable, or when an illegal address alias is created (see Section

5.2.1, “Address Aliasing Flushing,” on page 28). This is done with a displacement

flush (see Section 5.2.3, “Displacement Flushing,” on page 29) or using ASI

accesses. See Section A.8, “D-Cache Diagnostic Accesses,” on page 314.

E-Cache:
Flush is needed for stable storage. Examples of stable storage include battery-

backed memory and transaction logs. This is done with either a displacement

flush (see Section 5.2.3, “Displacement Flushing,” on page 29) or a store with

ASI_BLK_COMMIT_{PRIMARY,SECONDARY}. Flushing the E-Cache will flush

the corresponding blocks from the I- and D-Caches, because UltraSPARC main-

tains inclusion between the external and internal caches. See Section 5.2.2, “Com-

mitting Block Store Flushing,” on page 29.

5.2.1 Address Aliasing Flushing

A side-effect inherent in a virtual-indexed cache is illegal address aliasing. Aliasing

occurs when multiple virtual addresses map to the same physical address. Since

UltraSPARC’s D-Cache is indexed with the virtual address bits and is larger than

the minimum page size, it is possible for the different aliased virtual addresses to

end up in different cache blocks. Such aliases are illegal because updates to one

cache block will not be reflected in aliased cache blocks.

Normally, software avoids illegal aliasing by forcing aliases to have the same ad-

dress bits (virtual color) up to an alias boundary. For UltraSPARC, the minimum

alias boundary is 16Kb; this size may increase in future designs. When the alias

boundary is violated, software must flush the D-Cache if the page was virtual

cacheable. In this case, only one mapping of the physical page can be allowed in

the D-MMU at a time. Alternatively, software can turn off virtual caching of ille-

gally aliased pages. This allows multiple mappings of the alias to be in the

D-MMU and avoids flushing the D-Cache each time a different mapping is refer-

enced.
Sun Microelectronics
28

5. Cache and Memory Interactions
Note: A change in virtual color when allocating a free page does not require a

D-Cache flush, because the D-Cache is write-through.

5.2.2 Committing Block Store Flushing

In UltraSPARC, stable storage must be implemented by software cache flush.

Data that is present and modified in the E-Cache must be written back to the sta-

ble storage.

UltraSPARC implements two ASIs (ASI_BLK_COMMIT_{PRIMARY,SECOND-

ARY}) to perform these writebacks efficiently when software can ensure exclusive

write access to the block being flushed. Using these ASIs, software can write back

data from the floating-point registers to memory and invalidate the entry in the

cache. The data in the floating-point registers must first be loaded by a block load

instruction. A MEMBAR #Sync instruction is needed to ensure that the flush is

complete. See also Section 13.6.4, “Block Load and Store Instructions,” on page

230.

5.2.3 Displacement Flushing

Cache flushing also can be accomplished by a displacement flush. This is done by

reading a range of read-only addresses that map to the corresponding cache line

being flushed, forcing out modified entries in the local cache. Care must be taken

to ensure that the range of read-only addresses is mapped in the MMU before

starting a displacement flush, otherwise the TLB miss handler may put new data

into the caches.

Note: Diagnostic ASI accesses to the E-Cache can be used to invalidate a line,

but they are generally not an alternative to displacement flushing. Modified data

in the E-Cache will not be written back to memory using these ASI accesses. See

Section A.9, “E-Cache Diagnostics Accesses,” on page 315.

5.3 Memory Accesses and Cacheability

Note: Atomic load-store instructions are treated as both a load and a store; they

can be performed only in cacheable address spaces.
Sun Microelectronics
29

UltraSPARC User’s Manual
5.3.1 Coherence Domains

Two types of memory operations are supported in UltraSPARC: cacheable and

noncacheable accesses, as indicated by the page translation. Cacheable accesses

are inside the coherence domain; noncacheable accesses are outside the coherence

domain.

SPARC-V9 does not specify memory ordering between cacheable and noncache-

able accesses. In TSO mode, UltraSPARC maintains TSO ordering, regardless of

the cacheability of the accesses. For SPARC-V9 compatibility while in PSO or

RMO mode, a MEMBAR #Lookaside should be used between a store and a sub-

sequent load to the same noncacheable address. See Section 8, “Memory Models,”

in The SPARC Architecture Manual, Version 9 for more information about the

SPARC-V9 memory models.

Note: On UltraSPARC, a MEMBAR #Lookaside executes more efficiently than

a MEMBAR #StoreLoad .

5.3.1.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses.

They are implemented in UltraSPARC with the following properties:

• Data resides in real memory locations.

• They observe supported cache coherence protocol(s).

• The unit of coherence is 64 bytes.

5.3.1.2 Non-Cacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.

Some of these memory (-mapped) locations may have side-effects when accessed.

They are implemented in UltraSPARC with the following properties:

• Data may or may not reside in real memory locations.

• Accesses may result in program-visible side-effects; for example, memory-

mapped I/O control registers in a UART may change state when read.

• They may not observe supported cache coherence protocol(s).

• The smallest unit in each transaction is a single byte.
Sun Microelectronics
30

5. Cache and Memory Interactions
Noncacheable accesses with the E-bit set (that is, those having side-effects) are all

strongly ordered with respect to other noncacheable accesses with the E-bit set. In

addition, store buffer compression is disabled for these accesses. Speculative

loads with the E-bit set cause a data_access_exception trap (with SFSR.FT=2, spec-

ulative load to page marked with E-bit).

Note: The side-effect attribute does not imply noncacheability.

5.3.1.3 Global Visibility and Memory Ordering

A memory access is considered globally visible when it has been acknowledged

by the system. In order to ensure the correct ordering between the cacheable and

noncacheable domains, explicit memory synchronization is needed in the form of

MEMBARs or atomic instructions. Code Example 5-1 illustrates the issues in-

volved in mixing cacheable and noncacheable accesses.

Code Example 5-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:

While (1)

{

Store D1:data produced

1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag

While F1 is set (spin on flag)

Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

Load D2

}

Process B:

While (1)

{

While F1 is cleared (spin on flag)

Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

Load D1

Store D2

1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag

}

Sun Microelectronics
31

UltraSPARC User’s Manual
Note: A MEMBAR #MemIssue or MEMBAR #Sync is needed if ordering of

cacheable accesses following noncacheable accesses must be maintained in PSO

or RMO.

Due to load and store buffers implemented in UltraSPARC, the above example

may not work in PSO and RMO modes without the MEMBARs shown in the pro-

gram segment.

In TSO mode, loads and stores (except block stores) cannot pass earlier loads, and

stores cannot pass earlier stores; therefore, no MEMBAR is needed.

In PSO mode, loads are completed in program order, but stores are allowed to

pass earlier stores; therefore, only the MEMBAR at #1 is needed between updat-

ing data and the flag.

In RMO mode, there is no implicit ordering between memory accesses; therefore,

the MEMBARs at both #1 and #2 are needed.

5.3.2 Memory Synchronization: MEMBAR and FLUSH

The MEMBAR (STBAR in SPARC-V8) and FLUSH instructions are provide for ex-

plicit control of memory ordering in program execution. MEMBAR has several

variations; their implementations in UltraSPARC are described below. See Section

A.31, “Memory Barrier,” Section 8.4.3, “The MEMBAR Instruction,” and Section J,

“Programming With the Memory Models,” in The SPARC Architecture Manual,
Version 9 for more information.

5.3.2.1 MEMBAR #LoadLoad

Forces all loads after the MEMBAR to wait until all loads before the MEMBAR

have reached global visibility.

5.3.2.2 MEMBAR #StoreLoad

Forces all loads after the MEMBAR to wait until all stores before the MEMBAR

have reached global visibility.

5.3.2.3 MEMBAR #LoadStore

Forces all stores after the MEMBAR to wait until all loads before the MEMBAR

have reached global visibility.
Sun Microelectronics
32

5. Cache and Memory Interactions
5.3.2.4 MEMBAR #StoreStore and STBAR

Forces all stores after the MEMBAR to wait until all stores before the MEMBAR

have reached global visibility.

Note: STBAR has the same semantics as MEMBAR #StoreStore ; it is included

for SPARC-V8 compatibility.

Note: The above four MEMBARs do not guarantee ordering between cacheable

accesses after noncacheable accesses.

5.3.2.5 MEMBAR #Lookaside

SPARC-V9 provides this variation for implementations having virtually tagged

store buffers that do not contain information for snooping.

Note: For SPARC-V9 compatibility, this variation should be used before issuing

a load to an address space that cannot be snooped.

5.3.2.6 MEMBAR #MemIssue

Forces all outstanding memory accesses to be completed before any memory ac-

cess instruction after the MEMBAR is issued. It must be used to guarantee order-

ing of cacheable accesses following non-cacheable accesses. For example, I/O

accesses must be followed by a MEMBAR #MemIssue before subsequent cache-

able stores; this ensures that the I/O accesses reach global visibility before the

cacheable stores after the MEMBAR.

Note: MEMBAR #MemIssue is different from the combination of MEMBAR

#LoadLoad | #LoadStore | #StoreLoad | #StoreStore . MEMBAR

#MemIssue orders cacheable and noncacheable domains; it prevents memory

accesses after it from issuing until it completes.

5.3.2.7 MEMBAR #Sync (Issue Barrier)

Forces all outstanding instructions and all deferred errors to be completed before

any instructions after the MEMBAR are issued.
Sun Microelectronics
33

UltraSPARC User’s Manual
Note: MEMBAR #Sync is a costly instruction; unnecessary usage may result in

substantial performance degradation.

5.3.2.8 Self-Modifying Code (FLUSH)

The SPARC-V9 instruction set architecture does not guarantee consistency be-

tween code and data spaces. A problem arises when code space is dynamically

modified by a program writing to memory locations containing instructions. LISP

programs and dynamic linking require this behavior. SPARC-V9 provides the

FLUSH instruction to synchronize instruction and data memory after code space

has been modified.

In UltraSPARC, a FLUSH behaves like a store instruction for the purpose of

memory ordering. In addition, all instruction (pre-)fetch buffers are invalidated.

The issue of the FLUSH instruction is delayed until previous (cacheable) stores

are completed. Instruction (pre-)fetch resumes at the instruction immediately af-

ter the FLUSH.

5.3.3 Atomic Operations

SPARC-V9 provides three atomic instructions to support mutual exclusion. These

instructions behave like both a load and a store, but the operations are carried out

indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in unprivileged mode (PSTATE.PRIV=0)

causes a privileged_action trap. An atomic access with a noncacheable address caus-

es a data_access_exception trap (with SFSR.FT=4, atomic to page marked non-

cacheable). An atomic access with an unsupported ASI causes a

data_access_exception trap (with SFSR.FT=8, illegal ASI value or virtual address).

Table 5-1 lists the ASIs that support atomic accesses.

Table 5-1 ASIs that Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS{_LITTLE} Restricted

ASI_AS_IF_USER_PRIMARY{_LITTLE} Restricted

ASI_AS_IF_USER_SECONDARY{_LITTLE} Restricted

ASI_PRIMARY{_LITTLE} Unrestricted

ASI_SECONDARY{_LITTLE} Unrestricted

ASI_PHYS_USE_EC{_LITTLE} Unrestricted
Sun Microelectronics
34

5. Cache and Memory Interactions
Note: Atomic accesses with non-faulting ASIs are not allowed, because these

ASIs have the load-only attribute.

5.3.3.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word

in memory. This instruction is issued only after store buffers are empty. Subse-

quent loads interlock on earlier SWAPs. A cache miss will allocate the corre-

sponding line.

Note: If a page is marked as virtually-non-cacheable but physically cacheable,

allocation is done to the E-Cache only.

5.3.3.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an in-

teger register and atomically writes all ones (FF16) into the addressed byte.

5.3.3.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic in-

struction. It compares the value in an integer register to a value in memory; if

they are equal, the value in memory is swapped with the contents of a second in-

teger register. All of these operations are carried out atomically; in other words,

no other memory operation may be applied to the addressed memory location

until the entire compare-and-swap sequence is completed.

5.3.4 Non-Faulting Load

A non-faulting load behaves like a normal load, except that:

• It does not allow side-effect access. An access with the E-bit set causes a

data_access_exception trap (with SFSR.FT=2, Speculative Load to page marked

E-bit).

• It can be applied to a page with the NFO-bit set; other types of accesses will

cause a data_access_exception trap (with SFSR.FT=1016, Normal access to page

marked NFO).
Sun Microelectronics
35

UltraSPARC User’s Manual
Non-faulting loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE}, or

ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes

a data_access_exception trap (with SFSR.FT=8, Illegal RW).

When a non-faulting load encounters a TLB miss, the operating system should at-

tempt to translate the page. If the translation results in an error (for example, ad-

dress out of range), a 0 is returned and the load completes silently.

Typically, optimizers use non-faulting loads to move loads before conditional

control structures that guard their use. This technique potentially increases the

distance between a load of data and the first use of that data, in order to hide la-

tency; it allows for more flexibility in code scheduling. It also allows for im-

proved performance in certain algorithms by removing address checking from

the critical code path.

For example, when following a linked list, non-faulting loads allow the null

pointer to be accessed safely in a read-ahead fashion if the OS can ensure that the

page at virtual address 016 is accessed with no penalty. The NFO (non-fault access

only) bit in the MMU marks pages that are mapped for safe access by non-fault-

ing loads, but can still cause a trap by other, normal accesses. This allows pro-

grammers to trap on wild pointer references (many programmers count on an

exception being generated when accessing address 016 to debug code) while ben-

efitting from the acceleration of non-faulting access in debugged library routines.

5.3.5 PREFETCH Instructions

Table 5-2 shows which UltraSPARC models support the PREFETCH{A} instruc-

tions.

UltraSPARC models that do not support PREFETCH treat it as a NOP.

5.3.5.1 PREFETCH Behavior and Limitations

UltraSPARC processors that do support PREFETCH behave in the following

ways:

• All PREFETCH instructions are enqueued on the load buffer, except as noted

below.

Table 5-2 PREFETCH{A} Instruction Support

UltraSPARC-I UltraSPARC-II

PREFETCH{A} ✓
Sun Microelectronics
36

5. Cache and Memory Interactions
• Some conditions, noted below, cause an otherwise supported PREFETCH to

be treated as a NOP and removed from the load buffer when it reaches the

front of the queue.

• No PREFETCH will cause a trap except:

• PREFETCH with fcn=5..15 causes an illegal_instruction trap, as defined in The
SPARC Architecture Manual, Version 9.

• Watchpoint, as defined in Section A.5, “Watchpoint Support,” on page 304.

• Any PREFETCHA that specifies an internal ASI in the following ranges is not

enqueued on the load buffer and is not executed:

• 4016..4F16, 5016..5F16, 6016..6F16, 7616, 7716

• The following conditions cause a PREFETCH{A} to be treated as a NOP:

• PREFECTH with fcn=16..31, as defined in The SPARC Architecture Manual,
Version 9.

• A data_access_MMU_miss exception

• D-MMU disabled

• For PREFETCHA, any ASI other than the following 0416, 0C16, 1016, 1116,

1816, 1916, 8016..8316, 8816..8B16

• Attempt to PREFETCH to a noncacheable page

• Alignment is not checked on PREFETCH{A}. The 5 least significant address

are ignored.

5.3.5.2 Implemented fcn Values

Table 5-3 lists the supported values for fcn and their meanings.

For more information, including an enumeration of the bus transaction the each

fcn value causes, see Section 14.4.5, “PREFETCH{A} (Impdep #103, 117),” on page

248.

Table 5-3 PREFETCH{A} Variants

fcn Prefetch Function

0 Prefetch for several reads

1 Prefetch for one read

2 Prefetch page

3 Prefetch for several writes

4 Prefetch for one write

5..15 illegal_instruction trap

16..31 NOP
Sun Microelectronics
37

UltraSPARC User’s Manual
5.3.6 Block Loads and Stores

Block load and store instructions work like normal floating-point load and store

instructions, except that the data size (granularity) is 64 bytes per transfer. See

Section 13.6.4, “Block Load and Store Instructions,” on page 230 for a full descrip-

tion of the instructions.

5.3.7 I/O and Accesses with Side-effects

I/O locations may not behave with memory semantics. Loads and stores may

have side-effects; for example, a read access may clear a register or pop an entry

off a FIFO. A write access may set a register address port so that the next access

to that address will read or write a particular internal registers, etc. Such devices

are considered order sensitive. Also, such devices may only allow accesses of a

fixed size, so store buffer merging of adjacent stores or stores within a 16-byte re-

gion will cause an access error.

The UltraSPARC MMU includes an attribute bit (the E-Bit) in each page transla-

tion, which, when set, indicates that access to this page cause side effects. Access-

es other than block loads or stores to pages that have this bit set have the

following behavior:

• Noncacheable accesses are strongly ordered with respect to each other

• Noncacheable loads with the E-bit set will not be issued until all previous

control transfers (including exceptions) are resolved.

• Store buffer compression is disabled for noncacheable accesses.

• Non-faulting loads are not allowed and will cause a data_access_exception trap

(with SFSR.FT = 2, speculative load to page marked E-bit).

• A MEMBAR may be needed between side-effect and non-side-effect accesses

while in PSO and RMO modes.

5.3.8 Instruction Prefetch to Side-Effect Locations

UltraSPARC does instruction prefetching and follows branches that it predicts

will be taken. Addresses mapped by the I-MMU may be accessed even though

they are not actually executed by the program. Normally, locations with side ef-

fects or those that generate time-outs or bus errors will not be mapped by the

I-MMU, so prefetching will not cause problems. When running with the I-MMU

disabled, however, software must avoid placing data in the path of a control

transfer instruction target or sequentially following a trap or conditional branch

instruction. Data can be placed sequentially following the delay slot of a BA(,pt),
Sun Microelectronics
38

5. Cache and Memory Interactions
CALL, or JMPL instruction. Instructions should not be placed within 256 bytes of

locations with side effects. See Section 16.2.10, “Return Address Stack (RAS),” on

page 272 for other information about JMPLs and RETURNs.

5.3.9 Instruction Prefetch When Exiting RED_state

Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL is not

recommended. A noncacheable instruction prefetch may be made to the JMPL

target, which may be in a cacheable memory area. This may result in a bus error

on some systems, which will cause an instruction_access_error trap. The trap can be

masked by setting the NCEEN bit in the ESTATE_ERR_EN register to zero, but

this will mask all non-correctable error checking. To avoid this problem exit

RED_state with DONE or RETRY, or with a JMPL to a noncacheable target ad-

dress.

5.3.10 UltraSPARC Internal ASIs

ASIs in the ranges 4616 ..6F16 and 7616 ..7F16 are used for accessing internal

UltraSPARC states. Stores to these ASIs do not follow the normal memory model

ordering rules. Correct operation requires the following:

• A MEMBAR #Sync is needed after an internal ASI store other than MMU

ASIs before the point that side effects must be visible. This MEMBAR must

precede the next load or noninternal store. The MEMBAR also must be in or

before the delay slot of a delayed control transfer instruction of any type. This

is necessary to avoid corrupting data.

• A FLUSH, DONE, or RETRY is needed after an internal store to the MMU

ASIs (ASI 5016..5216, 5416..5F16) or to the IC bit in the LSU control register

before the point that side effects must be visible. Stores to D-MMU registers

other than the context ASIs may also use a MEMBAR #Sync . One of these

instructions must precede the next load or noninternal store. They also must

be in or before the delay slot of a delayed control transfer instruction. This is

necessary to avoid corrupting data.

5.4 Load Buffer

The load buffer allows the load and execution pipelines in UltraSPARC to be de-

coupled; thus, loads that cannot return data immediately will not stall the pipe-

line, but rather, will be buffered until they can return data. For example, when a

load misses the on-chip D-Cache and must access the E-Cache, the load will be

placed in the load buffer and the execution pipelines will continue moving as
Sun Microelectronics
39

UltraSPARC User’s Manual
long as they do not require the register that is being loaded. An instruction that

attempts to use the data that is being loaded by an instruction in the load buffer

is called a ‘use’ instruction.

The pipelines are not fully decoupled, because UltraSPARC still supports the no-

tion of precise traps, and loads that are younger than a trapping instruction must

not execute, except in the case of deferred traps. Loads themselves can take pre-

cise traps, when exceptions are detected in the pipeline. For example, address

misalignment or access violations detected in the translation process will both be

reported as precise traps. However, when a load has a hardware problem on the

external bus (for example, a parity error), it will generate a deferred trap, since

younger instructions, unblocked by the D-Cache miss, could have been retired

and modified the machine state. This may result in termination of the user thread

or reset. UltraSPARC does not support recovery from such hardware errors, and

they are fatal. See Chapter 11.1 , “Error Handling.”

5.5 Store Buffer
All store operations (including atomic and STA instructions) and barriers or store

completion instructions (MEMBAR and STBAR) are entered into the Store Buffer.

5.5.1 Stores Delayed by Loads

The store buffer normally has lower priority than the load buffer when arbitrat-

ing for the D-Cache or E-Cache, since returning load data is usually more critical

than store completion. To ensure that stores complete in a finite amount of time

as required by SPARC-V9, UltraSPARC eventually will raise the store buffer pri-

ority above load buffer priority if the store buffer is continually locked out by

subsequent loads (other than internal ASI loads). Software using a load spin loop

to wait for a signal from another processor following a store that signals that pro-

cessor will wait for the store to time out in the store buffer. For this type of code,

it is more efficient to put a MEMBAR #StoreLoad between the store and the

load spin loop.

5.5.2 Store Buffer Compression

Consecutive non-side-effect stores may be combined into aligned 16-byte entries

in the store buffer to improve store bandwidth. Cacheable stores can only be com-

pressed with adjacent cacheable stores, Likewise, noncacheable stores can only be

compressed with adjacent noncacheable stores. In order to maintain strong order-

ing for I/O accesses, stores with the side-effect attribute (E-bit set) cannot be

combined with any other stores.
Sun Microelectronics
40

MMU Internal Architecture 6
6.1 Introduction
This chapter provides detailed information about the UltraSPARC Memory Man-

agement Unit. It describes the internal architecture of the MMU and how to pro-

gram it.

6.2 Translation Table Entry (TTE)
The Translation Table Entry, illustrated in Figure 6-1, is the UltraSPARC equiva-

lent of a SPARC-V8 page table entry; it holds information for a single page map-

ping. The TTE is broken into two 64-bit words, representing the tag and data of

the translation. Just as in a hardware cache, the tag is used to determine whether

there is a hit in the TSB. If there is a hit, the data is fetched by software.

Figure 6-1 Translation Table Entry (TTE) (from TSB)

G: Global. If the Global bit is set, the Context field of the TTE is ignored

during hit detection. This allows any page to be shared among all (user

or supervisor) contexts running in the same processor. The Global bit is

duplicated in the TTE tag and data to optimize the software miss handler.

Context: The 13-bit context identifier associated with the TTE.

G VA_tag<63:22>Context

063

Tag

Data

414248 47

—

62 6061

—

PA<40:13>Size Soft

011363 41

CVCP

2312

WP

4

Diag

61 6062 5

GV E

6

L

7

Soft2

5059

NFO

49 40

IE

58
Sun Microelectronics
41

UltraSPARC User’s Manual
VA_tag<63:22>: Virtual Address Tag. The virtual page number. Bits 21 through 13

are not maintained in the tag, since these bits are used to index the

smallest direct-mapped TSB of 64 entries.

Note: Software must sign-extend bits VA_tag<63:44> to form an in-range VA.

V: Valid: If the Valid bit is set, the remaining fields of the TTE are

meaningful. Note that the explicit Valid bit is redundant with the

software convention of encoding an invalid TTE with an unused context.

The encoding of the context field is necessary to cause a failure in the TTE

tag comparison, while the explicit Valid bit in the TTE data simplifies the

TLB miss handler.

Size: The page size of this entry, encoded as shown in the following table.

NFO: No-Fault-Only. If this bit is set, loads with

ASI_PRIMARY_NO_FAULT{_LITTLE},

ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other

access will trap with a data_access_exception trap (FT=1016). The NFO-bit

in the I-MMU is read as zero and ignored when written. If this bit is set

before loading the TTE into the TLB, the iTLB miss handler should

generate an error.

IE: Invert Endianness. If this bit is set, accesses to the associated page are

processed with inverse endianness from what is specified by the

instruction (big-for-little and little-for-big). See Section 6.6, “ASI Value,

Context, and Endianness Selection for Translation,” on page 52 for

details. In the I-MMU this bit is read as zero and ignored when written.

Note: This bit is intended to be set primarily for noncacheable accesses. The

performance of cacheable accesses will be degraded as if the access had missed

the D-Cache.

Table 6-1 Size Field Encoding (from TTE)

Size<1:0> Page Size

00 8 Kb

01 64 Kb

10 512 Kb

11 4 Mb
Sun Microelectronics
42

6. MMU Internal Architecture
Soft<5:0>, Soft2<8:0>: Software-defined fields, provided for use by the operating

system. The Soft and Soft2 fields may be written with any value; they

read as zero.

Diag: Used by diagnostics to access the redundant information held in the TLB

structure. Diag<0>=Used bit, Diag<3:1>=RAM size bits, Diag<6:4>=CAM

size bits. (Size bits are 3-bit encoded as 000=8K, 001=64K, 011=512K,

111=4M.) The size bits are read-only; the Used bit is read/write. All other

Diag bits are reserved.

PA<40:13>: The physical page number. Page offset bits for larger page sizes

(PA<15:13>, PA<18:13>, and PA<21:13> for 64Kb, 512Kb, and 4Mb pages,

respectively) are stored in the TLB and returned for a Data Access read,

but ignored during normal translation.

L: Lock. If this bit is set, the TTE entry will be “locked down” when it is

loaded into the TLB; that is, if this entry is valid, it will not be replaced by

the automatic replacement algorithm invoked by an ASI store to the Data

In register. The lock bit has no meaning for an invalid entry. Arbitrary

entries may be locked down in the TLB. Software must ensure that at

least one entry is not locked when replacing a TLB entry, otherwise the

last TLB entry will be replaced.

CP, CV: The cacheable-in-physically-indexed-cache and cacheable-in-virtually-

indexed-cache bits determine the placement of data in UltraSPARC

caches, according to Table 6-2. The MMU does not operate on the

cacheable bits, but merely passes them through to the cache subsystem.

The CV-bit in the I-MMU is read as zero and ignored when written.

E: Side-effect. If this bit is set, speculative loads and FLUSHes will trap for

addresses within the page, noncacheable memory accesses other than

block loads and stores are strongly ordered against other E-bit accesses,

and noncacheable stores are not merged. This bit should be set for pages

that map I/O devices having side-effects. Note, however, that the E-bit

does not prevent normal instruction prefetching. The E-bit in the I-MMU

is read as zero and ignored when written.

Table 6-2 Cacheable Field Encoding (from TSB)

Cacheable
{CP, CV}

Meaning of TTE When Placed in:

iTLB
(I-Cache PA-Indexed)

dTLB
(D-Cache VA-Indexed)

0x Non-cacheable Non-cacheable

10 Cacheable E-Cache, I-Cache Cacheable E-Cache only

11 Cacheable E-Cache, I-Cache Cacheable E-Cache, D-Cache
Sun Microelectronics
43

UltraSPARC User’s Manual
Note: The E-bit does not force an uncacheable access. It is expected, but not

required, that the CP and CV bits will be set to zero when the E-bit is set.

P: Privileged. If the P bit is set, only the supervisor can access the page

mapped by the TTE. If the P bit is set and an access to the page is

attempted when PSTATE.PRIV=0, the MMU will signal an

instruction_access_exception or data_access_exception trap (FT=116).

W: Writable. If the W bit is set, the page mapped by this TTE has write

permission granted. Otherwise, write permission is not granted and the

MMU will cause a data_access_protection trap if a write is attempted. The

W-bit in the I-MMU is read as zero and ignored when written.

G: Global. This bit must be identical to the Global bit in the TTE tag. Similar

to the case of the Valid bit, the Global bit in the TTE tag is necessary for

the TSB hit comparison, while the Global bit in the TTE data facilitates

the loading of a TLB entry.

Compatibility Note:
Referenced and Modified bits are maintained by software. The Global, Privileged,
and Writable fields replace the 3-bit ACC field of the SPARC-V8 Reference MMU
Page Translation Entry.

6.3 Translation Storage Buffer (TSB)

The TSB is an array of TTEs managed entirely by software. It serves as a cache of

the Software Translation Table, used to quickly reload the TLB in the event of a

TLB miss. The discussion in this section assumes the use of the hardware support

for TSB access described in Section 6.3.1, “Hardware Support for TSB Access,” on

page 45, although the operating system is not required to make use of this sup-

port hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation infor-

mation may exist in the TLB that is not present in the TSB.

The TSB is arranged as a direct-mapped cache of TTEs. The UltraSPARC MMU

provides precomputed pointers into the TSB for the 8 Kb and 64 Kb page TTEs.

In each case, N least significant bits of the respective virtual page number are

used as the offset from the TSB base address, with N equal to log base 2 of the

number of TTEs in the TSB.

A bit in the TSB register allows the TSB 64 Kb pointer to be computed for the case

of common or split 8 Kb/64 Kb TSB(s).
Sun Microelectronics
44

6. MMU Internal Architecture
No hardware TSB indexing support is provided for the 512 Kb and 4 Mb page

TTEs. Since the TSB is entirely software managed, however, the operating system

may choose to place these larger page TTEs in the TSB by forming the appropri-

ate pointers. In addition, simple modifications to the 8 Kb and 64 Kb index point-

ers provided by the hardware allow formation of an M-way set-associative TSB,

multiple TSBs per page size, and multiple TSBs per process.

The TSB exists as a normal data structure in memory, and therefore may be

cached. Indeed, the speed of the TLB miss handler relies on the TSB accesses hit-

ting the level-2 cache at a substantial rate. This policy may result in some con-

flicts with normal instruction and data accesses, but the dynamic sharing of the

level-2 cache resource should provide a better overall solution than that provided

by a fixed partitioning.

Figure 6-2 shows both the common and shared TSB organization. The constant N
is determined by the Size field in the TSB register; it may range from 512 to 64K.

Figure 6-2 TSB Organization

6.3.1 Hardware Support for TSB Access

The MMU hardware provides services to allow the TLB miss handler to efficient-

ly reload a missing TLB entry for an 8 Kb or 64 Kb page. These services include:

• Formation of TSB Pointers based on the missing virtual address.

• Formation of the TTE Tag Target used for the TSB tag comparison.

• Efficient atomic write of a TLB entry with a single store ASI operation.

• Alternate globals on MMU-signalled traps.

Tag1 (8 bytes) Data1 (8 bytes)

000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in Common TSB

Tag1 (8 bytes) Data1 (8 bytes)

TagN (8 bytes) DataN (8 bytes)

2N Lines in Split TSB
Sun Microelectronics
45

UltraSPARC User’s Manual
A typical TLB miss and refill sequence is as follows:

1. A TLB miss causes either an instruction_access_MMU_miss or a

data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag

Target with loads from the MMU alternate space

3. Using this information, the TLB miss handler checks to see if the desired

TTE exists in the TSB. If so, the TTE Data is loaded into the TLB Data In

register to initiate an atomic write of the TLB entry chosen by the

replacement algorithm.

4. If the TTE does not exist in the TSB, the TLB miss handler jumps to a more

sophisticated (and slower) TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from

the Tag Access register, which holds the virtual address and context of the load or

store responsible for the MMU exception. See Section 6.9, “MMU Internal Regis-

ters and ASI Operations,” on page 55. (Note that there are no separate physical

registers in UltraSPARC hardware for the Pointer registers, but rather they are

implemented through a dynamic re-ordering of the data stored in the Tag Access

and the TSB registers.)

Pointers are provided by hardware for the most common cases of 8 Kb and 64 Kb

page miss processing. These pointers give the virtual addresses where the 8 Kb

and 64 Kb TTEs would be stored if either is present in the TSB.

N is defined to be the TSB_Size field of the TSB register; it ranges from 0 to 7.

Note that TSB_Size refers to the size of each TSB when the TSB is split.

For a shared TSB (TSB register split field=0):

8K_POINTER = TSB_Base<63:13+N> VA<21+N:13> 0000

64K_POINTER = TSB_Base<63:13+N> VA<24+N:16> 0000

For a split TSB (TSB register split field=1):

8K_POINTER = TSB_Base<63:14+N> 0 VA<21+N:13> 0000

64K_POINTER = TSB_Base<63:14+N> 1 VA<24+N:16> 0000

For a more detailed description of the pointer logic with pseudo-code and hard-

ware implementation, see Section 6.11.3, “TSB Pointer Logic Hardware Descrip-

tion,” on page 70.
Sun Microelectronics
46

6. MMU Internal Architecture
The TSB Tag Target (described in Section 6.9, “MMU Internal Registers and ASI

Operations,” on page 55) is formed by aligning the missing access VA (from the

Tag Access register) and the current context to positions found in the description

of the TTE tag. This allows an XOR instruction for TSB hit detection.

These items must be locked in the TLB to avoid an error condition: TLB-miss han-

dler, TSB and linked data, asynchronous trap handlers and data.

These items must be locked in the TSB (not necessarily the TLB) to avoid an error

condition: TSB-miss handler and data, interrupt-vector handler and data.

6.3.2 Alternate Global Selection During TLB Misses

In the SPARC-V9 normal trap mode, the software is presented with an alternate

set of global registers in the integer register file. UltraSPARC provides an addi-

tional feature to facilitate fast handling of TLB misses. For the following traps, the

trap handler is presented with a special set of MMU globals: fast_{instruction,da-
ta}_access_MMU_miss, {instruction,data}_access_exception, and

fast_data_access_protection. The privileged_action and *mem_address_not_aligned traps

use the normal alternate global registers.

Compatibility Note:
The UltraSPARC MMU performs no hardware table walking. The MMU hard-
ware never directly reads or writes the TSB.

6.4 MMU-Related Faults and Traps

Table 6-3 lists the traps recorded by the MMU.

1 Contents undefined if instruction_access_exception is due to virtual address out of range.

Table 6-3 MMU Traps

Trap Name Trap Cause

Registers Updated
(Stored State in MMU)

I-SFSR
I-Tag

Access
D-SFSR,

SFAR
D-Tag
Access

fast_instruction_access_MMU_miss iTLB miss ✓

instruction_access_exception Several (see below) ✓ ✓1

fast_data_access_MMU_miss dTLB miss ✓

data_access_exception Several (see below) ✓ ✓

fast_data_access_protection Protection violation ✓ ✓

privileged_action Use of privileged ASI ✓

*_watchpoint Watchpoint hit ✓

*_mem_address_not_aligned Misaligned mem op ✓
Sun Microelectronics
47

UltraSPARC User’s Manual
Note: The fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and

fast_data_access_protection traps are generated instead of

instruction_access_MMU_miss, data_access_MMU_miss, and data_access_protection
traps, respectively.

6.4.1 Instruction_access_MMU_miss Trap

This trap occurs when the I-MMU is unable to find a translation for an instruc-

tion access; that is, when the appropriate TTE is not in the iTLB.

6.4.2 Instruction_access_exception Trap

This trap occurs when the I-MMU is enabled and one of the following happens:

• The I-MMU detects a privilege violation for an instruction fetch; that is, an

attempted access to a privileged page when PSTATE.PRIV=0.

• Virtual address out of range and PSTATE.AM is not set. See Section 14.1.6,

“44-bit Virtual Address Space,” on page 237. Note that the case of JMPL/

RETURN and branch-CALL-sequential are handled differently. The contents

of the I-Tag Access Register are undefined in this case, but are not needed by

software.

6.4.3 Data_access_MMU_miss Trap

This trap occurs when the MMU is unable to find a translation for a data access;

that is, when the appropriate TTE is not in the data TLB for a memory operation.

6.4.4 Data_access_exception Trap

This trap occurs when the D-MMU is enabled and one of the following happens:

(the D-MMU does not prioritize these)

• The D-MMU detects a privilege violation for a data or FLUSH instruction

access; that is, an attempted access to a privileged page when

PSTATE.PRIV=0.

• A speculative (non-faulting) load or FLUSH instruction issued to a page

marked with the side-effect (E-bit)=1.

• An atomic instruction (including 128-bit atomic load) issued to a memory

address marked uncacheable in a physical cache; that is, with CP=0.
Sun Microelectronics
48

6. MMU Internal Architecture
• An invalid LDA/STA ASI value, invalid virtual address, read to write-only

register, or write to read-only register, but not for an attempted user access to

a restricted ASI (see the privileged_action trap described below).

• An access (including FLUSH) with an ASI other than

ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with

the NFO (no-fault-only) bit.

• Virtual address out of range (including FLUSH) and PSTATE.AM is not set.

See Section 4.2, “Virtual Address Translation,” on page 21.

The data_access_exception trap also occurs when the D-MMU is disabled and one

the following occurs:

• Speculative (non-faulting) load or FLUSH instruction issued when

LSU_Control_Register.DP=0.

• An atomic instruction (including 128-bit atomic load) is issued using the

ASI_PHYS_BYPASS_EC_WITH_EBIT{_LITTLE} ASIs. In this case

SFSR.FT=0416.

6.4.5 Data_access_protection Trap

This trap occurs when the MMU detects a protection violation for a data access.

A protection violation is defined to be an attempted store to a page that does not

have write permission.

6.4.6 Privileged_action Trap

This trap occurs when an access is attempted using a restricted ASI while in non-

privileged mode (PSTATE.PRIV=0).

6.4.7 Watchpoint Trap

This trap occurs when watchpoints are enabled and the D-MMU detects a load or

store to the virtual or physical address specified by the VA Data Watchpoint Register

or the PA Data Watchpoint Register, respectively. See Section A.5, “Watchpoint Sup-

port,” on page 304.

6.4.8 Mem_address_not_aligned Trap

This trap occurs when a load, store, atomic, or JMPL/RETURN instruction with a

misaligned address is executed. The LSU signals this trap, but the D-MMU

records the fault information in the SFSR and SFAR.
Sun Microelectronics
49

UltraSPARC User’s Manual
6.5 MMU Operation Summary

Table 6-4 on page 51 summarizes the behavior of the D-MMU; Table 6-5 on page

51 summarizes the behavior of the I-MMU for normal (non-UltraSPARC-internal)

ASIs. In each case, for all conditions the behavior of the MMU is given by one of

the following abbreviations:

The ASI is indicated by one the following abbreviations:

Note: The “*_LITTLE” versions of the ASIs behave the same as the big-endian

versions with regard to the MMU table of operations.

Other abbreviations include “W” for the writable bit, “E” for the side-effect bit,

and “P” for the privileged bit.

The tables do not cover the following cases:

• Invalid ASIs, ASIs that have no meaning for the opcodes listed, or non-

existent ASIs; for example, ASI_PRIMARY_NO_FAULT for a store or atomic.

Also, access to UltraSPARC internal registers other than LDXA, LDFA, STDFA

or STXA, except for I-Cache diagnostic accesses other than LDDA, STDFA or

STXA. See Section 8.3.2, “UltraSPARC (Non-SPARC-V9) ASI Extensions,” on

page 147. The MMU signals a data_access_exception trap (FT=0816) for this

case.

Abbrev Meaning

OK Normal Translation

DMISS data_access_MMU_miss trap

DEXC data_access_exception trap

DPROT data_access_protection trap

IMISS instruction_access_MMU_miss trap

IEXC instruction_access_exception trap

Abbrev Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT”

SEC Any ASI with SECONDARY translation, except *NO_FAULT”

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_AS_IF_USER_PRIMARY*

U_SEC ASI_AS_IF_USER_SECONDARY*

BYPASS ASI_PHYS_* and also other ASIs that require the MMU to perform a bypass operation

(such as D-Cache access)
Sun Microelectronics
50

6. MMU Internal Architecture
• Attempted access using a restricted ASI in non-privileged mode. The MMU

signals a privileged_action exception for this case.

• An atomic instruction (including 128-bit atomic load) issued to a memory

address marked uncacheable in a physical cache (that is, with CP=0),

including cases in which the D-MMU is disabled. The MMU signals a

data_access_exception trap (FT=0416) for this case.

• A data access (including FLUSH) with an ASI other than

ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with

the NFO (no-fault-only) bit. The MMU signals a data_access_exception trap

(FT=1016) for this case.

• Virtual address out of range (including FLUSH) and PSTATE.AM is not set.

The MMU signals a data_access_exception trap (FT=2016) for this case.

Table 6-4 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode
PRIV
Mode

ASI W
TLB
Miss

E=0
P=0

E=0
P=1

E=1
P=0

E=1
P=1

Load

0 PRIM, SEC — DMISS OK DEXC OK DEXC

PRIM_NF, SEC_NF — DMISS OK DEXC DEXC DEXC

1 PRIM, SEC, NUC — DMISS OK OK

PRIM_NF, SEC_NF — DMISS OK DEXC

U_PRIM, U_SEC — DMISS OK DEXC OK DEXC

FLUSH
0 — DMISS OK DEXC DEXC DEXC

1 — DMISS OK OK DEXC DEXC

Store or

Atomic

0 PRIM, SEC 0 DMISS DPROT DEXC DPROT DEXC

1 DMISS OK DEXC OK DEXC

1 PRIM, SEC, NUC 0 DMISS DPROT DPROT

1 DMISS OK OK

U_PRIM, U_SEC 0 DMISS DPROT DEXC DPROT DEXC

1 DMISS OK DEXC OK DEXC

— 0 BYPASS — privileged_action

—
1 BYPASS — Bypass. No traps when D-MMU enabled,

PRIV=1.

Table 6-5 I-MMU Operations for Normal ASIs

Condition Behavior

PRIV Mode TLB Miss P=0 P=1

0 IMISS OK IEXC

1 IMISS OK
Sun Microelectronics
51

UltraSPARC User’s Manual
See Section 8.3, “Alternate Address Spaces,” on page 146 for a summary of the

UltraSPARC ASI map.

6.6 ASI Value, Context, and Endianness Selection for Translation
The MMU uses a two-step process to select the context for a translation:

1. The ASI is determined (conceptually by the Integer Unit) from the

instruction, trap level, and the processor endian mode

2. The context register is determined directly from the ASI.

The ASI value and endianness (little or big) are determined for the I-MMU and

D-MMU respectively according to Table 6-6 and Table 6-7 on page 53.

Note: The secondary context is never used to fetch instructions. The I-MMU

uses the value stored in the D-MMU Primary Context register when using the

Primary Context identifier; there is no I-MMU Primary Context register.

Note: The endianness of a data access is specified by three conditions: the ASI

specified in the opcode or ASI register, the PSTATE current little endian bit, and

the D-MMU invert endianness bit. The D-MMU invert endianness bit does not

affect the ASI value recorded in the SFSR, but does invert the endianness that is

otherwise specified for the access.

Note: The D-MMU Invert Endianness (IE) bit inverts the endianness for all

accesses to translating ASIs, including LD/ST/Atomic alternates that have

specified an ASI. That is, LDXA [%g1]ASI_PRIMARY_LITTLE will be big-endian

if the IE bit is on. Accesses to non-translating ASIs are not affected by the

D-MMU’s IE bit. See Section 8.3, “Alternate Address Spaces,” on page 146 for

information about non-translating ASIs
Sun Microelectronics
52

6. MMU Internal Architecture
1 Accesses to non-translating ASIs are always made in “big endian” mode, regardless of the setting of D-MMU.IE. See Section 8.3,
“Alternate Address Spaces,” on page 146 for information about non-translating ASIs.

The context register used by the data and instruction MMUs is determined from

the following table. A comprehensive list of ASI values can be found in the ASI

map in Section 8.3, “Alternate Address Spaces,” on page 146. The context register

selection is not affected by the endianness of the access.

a. Any ASI name containing the string “NUCLEUS”.

b. Any ASI name containing the string “PRIMARY”.

c. Any ASI name containing the string “SECONDARY”.

Table 6-6 ASI Mapping for Instruction Accesses

Condition for Instruction Access Resulting Action

PSTATE.TL Endianness ASI Value (in SFSR)

0 Big ASI_PRIMARY

> 0 Big ASI_NUCLEUS

Table 6-7 ASI Mapping for Data Accesses

Condition for Data Access Access Processed with:

Opcode
PSTATE.

TL
PSTATE.

CLE
D-MMU.

IE
Endianness

ASI Value
(Recorded in SFSR)

LD/ST/Atomic/FLUSH

0

0
0 Big

ASI_PRIMARY
1 Little

1
0 Little

ASI_PRIMARY_LITTLE
1 Big

> 0

0
0 Big

ASI_NUCLEUS
1 Little

1
0 Little

ASI_NUCLEUS_LITTLE
1 Big

LD/ST/Atomic Alternate

with specified ASI not
ending in “_LITTLE”

Don’t Care Don’t Care
0 Big1

Specified ASI value from immediate

field in opcode or ASI register1 Little1

LD/ST/Atomic Alternate

with specified ASI

ending in ‘_LITTLE”

Don’t Care Don’t Care
0 Little

Specified ASI value from immediate

field in opcode or ASI register1 Big

Table 6-8 I-MMU and D-MMU Context Register Usage

ASI Value Context Register

ASI_*NUCLEUS*a Nucleus (000016 hard-wired)

ASI_*PRIMARY*b Primary

ASI_*SECONDARY*c Secondary

All other ASI values (Not applicable, no translation)
Sun Microelectronics
53

UltraSPARC User’s Manual
6.7 MMU Behavior During Reset, MMU Disable, and RED_state

During global reset of the UltraSPARC CPU, the following actions occur:

• No change occurs in any block of the D-MMU.

• No change occurs in the datapath or TLB blocks of the I-MMU.

• The I-MMU resets its internal state machine to normal (non-suspended)

operation.

• The I-MMU and D-MMU Enable bits in the LSU Control Register (see Section

A.6, “LSU_Control_Register,” on page 306) are set to zero.

On entering RED_state, the following action occurs:

• The I-MMU and D-MMU Enable bits in the LSU_Control_Register are set to

zero.

Either MMU is defined to be disabled when its respective MMU Enable bit equals

0; also, the I-MMU is disabled whenever the CPU is in RED_state. The D-MMU is

enabled or disabled solely by the state of the D-MMU Enable bit.

When the D-MMU is disabled it truncates all accesses, behaving as if

ASI_PHYS_BYPASS_EC_WITH_EBIT had been used, notably with side effect bit

(E-bit)=1, P=0 and CP=0. Other attribute bit settings can be found in Section 6.10,

“MMU Bypass Mode,” on page 68. However, if a bypass ASI is used while the D-

MMU is disabled, the bypass operation behaves as it does when the D-MMU is

enabled; that is, the access is processed with the E and CP bits as specified by the

bypass ASI.

When the I-MMU is disabled, it truncates all instruction accesses and passes the

physically-cacheable bit (CP=0) to the cache system. The access will not generate

an instruction_access_exception trap.

When disabled, both the I-MMU and D-MMU correctly perform all LDXA and

STXA operations to internal registers, and traps are signalled just as if the MMU

were enabled. For instance, if a *NO_FAULT load is issued when the D-MMU is

disabled, the D-MMU signals a data_access_exception trap (FT=0216), since access-

es when the D-MMU is disabled have E=1.

Note: While the D-MMU is disabled, data in the D-Cache can be accessed only

using load and store alternates to the UltraSPARC internal D-Cache access ASI.

Normal loads and stores bypass the D-Cache. Data in the D-Cache cannot be

accessed using load or store alternates that use ASI_PHYS_*.
Sun Microelectronics
54

6. MMU Internal Architecture
Note: No reset of the TLB is performed by a chip reset or by entering

RED_state. Before the MMUs are enabled, the operating system software must

explicitly write each entry with either a valid TLB entry or an entry with the

valid bit set to zero. The operation of the I-MMU or D-MMU in enabled mode is

undefined if the TLB valid bits have not been set explicitly beforehand.

6.8 Compliance with the SPARC-V9 Annex F

The UltraSPARC MMU complies completely with Annex F, “SPARC-V9 MMU Re-

quirements,” in The SPARC Architecture Manual, Version 9. Table 6-9 shows how

various protection modes can be achieved, if necessary, through the presence or

absence of a translation in the I- or D-MMU. Note that this behavior requires spe-

cialized TLB miss handler code to guarantee these conditions.

6.9 MMU Internal Registers and ASI Operations

6.9.1 Accessing MMU Registers

All internal MMU registers can be accessed directly by the CPU through

UltraSPARC-defined ASIs. Several of the registers have been assigned their own

ASI because these registers are crucial to the speed of the TLB miss handler. Al-

lowing the use of %g0 for the address reduces the number of instructions to per-

form the access to the alternate space (by eliminating address formation).

See Section 6.10, “MMU Bypass Mode,” on page 68 for details on the behavior of

the MMU during all other UltraSPARC ASI accesses. For instance, to facilitate an

access to the D-Cache, the MMU performs a bypass operation.

Table 6-9 MMU Compliance w/SPARC-V9 Annex F Protection Mode

Condition
Resultant

Protection ModeTTE in
D-MMU

TTE in
I-MMU

Writable
Attribute Bit

Yes No 0 Read-only

No Yes Don’t Care Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute
Sun Microelectronics
55

UltraSPARC User’s Manual
Warning – STXA to an MMU register requires either a MEMBAR #Sync , FLUSH,

DONE, or RETRY before the point that the effect must be visible to load / store /

atomic accesses. Either a FLUSH, DONE, or RETRY is needed before the point

that the effect must be visible to instruction accesses: MEMBAR #Sync is not

sufficient. In either case, one of these instructions must be executed before the

next non-internal store or load of any type and on or before the delay slot of a

DCTI of any type. This is necessary to avoid corrupting data.

If the low order three bits of the VA are non-zero in a LDXA/STXA to/from these

registers, a mem_address_not_aligned trap occurs. Writes to read-only, reads to

write-only, illegal ASI values, or illegal VA for a given ASI may cause a

data_access_exception trap (FT=0816). (The hardware detects VA violations in only

an unspecified lower portion of the virtual address.)

Warning – UltraSPARC does not check for out-of-range virtual addresses during

an STXA to any internal register; it simply sign extends the virtual address based

on VA<43>. Software must guarantee that the VA is within range.

Writes to the TSB register, Tag Access register, and PA and VA Watchpoint Ad-

dress Registers are not checked for out-of-range VA. No matter what is written to

the register, VA<63:43> will always be identical on a read.

Table 6-10 UltraSPARC MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI

VA<63:0> Access Register or Operation Name

5016 5816 016 Read-only I-/D-TSB Tag Target Registers

— 5816 816 Read/Write Primary Context Register

— 5816 1016 Read/Write Secondary Context Register

5016 5816 1816 Read/Write I-/D-Synchronous Fault Status Registers

— 5816 2016 Read-only D Synchronous Fault Address Register

5016 5816 2816 Read/Write I-/D-TSB Registers

5016 5816 3016 Read/Write I-/D-TLB Tag Access Registers

— 5816 3816 Read/Write Virtual Watchpoint Address

— 5816 4016 Read/Write Physical Watchpoint Address

5116 5916 016 Read-only I-/D-TSB 8K Pointer Registers

5216 5A16 016 Read-only I-/D-TSB 64K Pointer Registers

— 5B16 016 Read-only D-TSB Direct Pointer Register

5416 5C16 016 Write-only I-/D-TLB Data In Registers

5516 5D16 016..1F816 Read/Write I-/D-TLB Data Access Registers

5616 5E16 016..1F816 Read-only I-/D-TLB Tag Read Register

5716 5F See 6.9.10 Write-only I-/D-MMU Demap Operation
Sun Microelectronics
56

6. MMU Internal Architecture
6.9.2 I-/D-TSB Tag Target Registers

The I- and D-TSB Tag Target registers are simply bit-shifted versions of the data

stored in the I- and D-Tag Access registers, respectively. Since the I- or D-Tag Ac-

cess register is updated on an I- or D-TLB miss, respectively, the I- and D-Tag Tar-

get registers appear to software to be updated on an I or D TLB miss.

Figure 6-3 MMU Tag Target Registers (Two Registers)

I/D Context<12:0>: The context associated with the missing virtual address.

I/D VA<63:22>: The most significant bits of the missing virtual address.

6.9.3 Context Registers

The context registers are shared by the I- and D-MMUs. The Primary Context

Register is defined as follows:

Figure 6-4 D-MMU Primary Context Register

PContext: Context identifier for the primary address space.

The Secondary Context register is defined as follows:

Figure 6-5 D-MMU Secondary Context Register

SContext: Context identifier for the secondary address space.

The Nucleus Context register is hardwired to zero:

Figure 6-6 D-MMU Nucleus Context Register

63 61 47 4160 48 42 0

Context000 — VA<63:22>

63 13 12 0

— PContext

63 13 12 0

— SContext

63 0

00
Sun Microelectronics
57

UltraSPARC User’s Manual
Compatibility Note
The single context register of the SPARC-V8 Reference MMU has been replaced in
UltraSPARC by the three context registers shown in Figures 6-4, 6-5, and 6-6.

Note: A STXA to the context registers requires either a MEMBAR #Sync ,

FLUSH, DONE, or RETRY before the point that the effect must be visible to data

accesses. Either a FLUSH, DONE, or RETRY is needed before the point that the

effect must be visible to instruction accesses: MEMBAR #Sync is not sufficient. In

either case, one of these instructions must be executed before the next translating

or bypass store or load of any type. This is necessary to avoid corrupting data.

6.9.4 I-/D-MMU Synchronous Fault Status Registers (SFSR)

The I- and D-MMU each maintain their own SFSR register, which is defined as

follows:

Figure 6-7 I- and D-MMU Synchronous Fault Status Register Format

ASI: The ASI field records the 8-bit ASI associated with the faulting

instruction. This field is valid for both D-MMU and I-MMU SFSRs and

for all traps in which the FV bit is set. JMPL and RETURN

mem_address_not_aligned traps set the default ASI, as does a trapping non-

alternate load or store; that is, to ASI_PRIMARY for PSTATE.CLE=0, or

ASI_PRIMARY_LITTLE otherwise.

FT: The Fault Type field indicates the exact condition that caused the

recorded fault, according to Table 6-11. In the D-MMU the Fault Type

field is valid only for data_access_exception traps; there is no ambiguity in

all other MMU trap cases. Note that the hardware does not priority-

encode the bits set in the fault type register; that is, multiple bits may be

set. The FT field in the D-MMU SFSR reads zero for traps other than

data_access_exception. The FT field in the I-MMU SFSR always reads zero

for instruction_access_MMU_miss, and either 0116, 2016, or 4016 for

instruction_access_exception, as all other fault types do not apply.

63 2324 15 1316 14 7 5 3 16 4 2 0

— ASI — FT E W O F
VW

C
T

P
R

Sun Microelectronics
58

6. MMU Internal Architecture
E: Reports the side-effect bit (E) associated with the faulting data access or

FLUSH instruction. Set by FLUSH or translating ASI accesses (see Section

8.3, “Alternate Address Spaces,” on page 146) mapped by the TLB with

the E bit set and ASI_PHYS_BYPASS_EC_WITH_EBIT{_LITTLE} ASIs

(1516 and 1D16). Other cases that update the SFSR (including bypass or

internal ASI accesses) set the E bit to 0. It always reads as 0 in the I-MMU.

CT: Context register selection, as described in the following table. The context

is set to 112 when the access does not have a translating ASI (see Section

8.3, “Alternate Address Spaces,” on page 146).

PR: Privilege. Set if the faulting access occurred while in Privileged mode.

This field is valid for all traps in which the Fault Valid (FV) bit is set.

W: Write. Set if the faulting access indicated a data write operation (a store

or atomic load/store instruction). Always reads as 0 in the I-MMU SFSR.

OW: Overwrite. Set to one when the MMU detects a fault, if the Fault Valid bit

has not been cleared from a previous fault; otherwise, it is set to zero.

Table 6-11 MMU Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

0116 Privilege violation

0216 Speculative Load or Flush instruction to page marked with E-bit. This bit is zero for internal

ASI accesses.

0416 Atomic (including 128-bit atomic load) to page marked uncacheable. This bit is zero for

internal ASI accesses, except for atomics to DTLB_DATA_ACCESS_REG (5D16), which

update according to the TLB entry accessed.

0816 Illegal LDA/STA ASI value, VA, RW, or size. Excludes cases where 0216 and 0416 are set.

1016 Access other than non-faulting load to page marked NFO. This bit is zero for internal ASI

accesses.

2016 VA out of range (D-MMU and I-MMU branch, CALL, sequential)

4016 VA out of range (I-MMU JMPL or RETURN)

Table 6-12 MMU SFSR Context ID Field Description

Context ID I-MMU Context D-MMU Context

00 Primary Primary

01 Reserved Secondary

10 Nucleus Nucleus

11 Reserved Reserved
Sun Microelectronics
59

UltraSPARC User’s Manual
FV: Fault Valid. Set when the MMU detects a fault; it is cleared only on an

explicit ASI write of 0 to the SFSR register. When FV is not set, the values

of the remaining fields in the SFSR and SFAR are undefined.

The SFSR and the Tag Access registers both maintain state concerning a previous

translation causing an exception. The update policy for the SFSR and the Tag Ac-

cess registers is shown in Table 6-4 on page 51.

Note: A fast_{instruction,data}_access_MMU_miss trap does not cause the SFSR or

SFAR to be written. In this case the D-SFAR information can be obtained from the

D Tag Access register.

6.9.5 I-/D-MMU Synchronous Fault Address Registers (SFAR)

6.9.5.1 I-MMU Fault Address

There is no I-MMU Synchronous Fault Address register. Instead, software must

read the TPC register appropriately as discussed here.

For instruction_access_MMU_miss traps, TPC contains the virtual address that was

not found in the I-MMU TLB.

For instruction_access_exception traps, “privilege violation” fault type, TPC con-

tains the virtual address of the instruction in the privileged page that caused the

exception.

For instruction_access_exception traps, “VA out of range” fault types, note that the

TPC in these cases contains only a 44-bit virtual address, which is sign-extended

based on bit VA<43> for read. Therefore, use the following methods to compute

the virtual address that was out of range:

• For the branch, CALL, and sequential exception case, the TPC contains the

lower 44 bits of the virtual address that is out of range. Because the hardware

sign-extends a read of the TPC register based on VA<43>, the contents of the

TPC register XORed with FFFF F000 0000 000016 will give the full 64-bit out-

of-range virtual address.

• For the JMPL or RETURN exception case, the TPC contains the virtual address

of the JMPL or RETURN instruction itself. Software must disassemble the

instruction to compute the out-of-range virtual address of the target.
Sun Microelectronics
60

6. MMU Internal Architecture
6.9.5.2 D-MMU Fault Address

The Synchronous Fault Address register contains the virtual memory address of

the fault recorded in the D-MMU Synchronous Fault Status register. There is no

I-SFAR, since the instruction fault address is found in the trap program counter

(TPC). The SFAR can be considered an additional field of the D-SFSR.

Figure 6-8 illustrates the D-SFAR.

Figure 6-8 D-MMU Synchronous Fault Address Register (SFAR) Format

Fault Address: The virtual address associated with the translation fault recorded

in the D-SFSR. This field is valid only when the D-SFSR Fault Valid (FV)

bit is set. This field is sign-extended based on VA<43>, so bits VA<63:44>

do not correspond to the virtual address used in the translation for the

case of a VA-out-of-range data_access_exception trap. (For this case,

software must disassemble the trapping instruction.)

6.9.6 I-/D- Translation Storage Buffer (TSB) Registers

The TSB registers provide information for the hardware formation of TSB point-

ers and tag target, to assist software in handling TLB misses quickly. If the TSB

concept is not employed in the software memory management strategy, and

therefore the pointer and tag access registers are not used, then the TSB registers

need not contain valid data.

Figure 6-9 illustrates the TSB register.

Figure 6-9 I-/D-TSB Register Format

I/D TSB_Base<63:13>: Provides the base virtual address of the Translation

Storage Buffer. Software must ensure that the TSB Base is aligned on a

boundary equal to the size of the TSB, or both TSBs in the case of a split

TSB.

Warning – Stores to the TSB registers are not checked for out-of-range violations.

Reads from these registers are sign-extended based on TSB_Base<43>.

63 0

Fault Address (VA<63:0>)

63 3 2 0

TSB_Base<63:13> (virtual) TSB_Size

13 12

Split —

11
Sun Microelectronics
61

UltraSPARC User’s Manual
Split: When Split=1, the TSB 64 Kb Pointer address is calculated assuming

separate (but abutting and equally-sized) TSB regions for the 8 Kb and

the 64 Kb TTEs. In this case, TSB_Size refers to the size of each TSB, and

therefore the TSB 8Kb Pointer address calculation is not affected by the

value of the Split bit. When Split=0, the TSB 64 Kb Pointer address is

calculated assuming that the same lines in the TSB are shared by 8 Kb

and 64 Kb TTEs, called a “common TSB” configuration.

Warning – In the “common TSB” configuration (TSB.Split=0), 8 Kb and 64 Kb

page TTEs can conflict, unless the TLB miss handler explicitly checks the TTE for

page size. Therefore, do not use the common TSB mode in an optimized handler.

For example, suppose an 8K page at VA=200016 and a 64K page at VA=1000016

both exist, which is a legal situation. These both want to exist at the second TSB

line (line 1), and have the same VA tag of 0. Therefore, there is no way for the

miss handler to distinguish these TTEs based on the TTE tag alone, and unless it

reads the TTE data, it may load an incorrect TTE.

I/D TSB_Size: The Size field provides the size of the TSB according to the

following:

•Number of entries in the TSB (or each TSB if split)=512 × 2TSB_Size.

•Number of entries in the TSB ranges from 512 entries at TSB_Size=0

(8 Kb common TSB, 16 Kb split TSB), to 64 Kb entries at TSB_Size=7

(1 Mb common TSB, 2 Mb split TSB).

Note: Any update to the TSB register immediately affects the data that is

returned from later reads of the Tag Target and TSB Pointer registers.

6.9.7 I-/D-TLB Tag Access Registers

In each MMU the Tag Access register is used as a temporary buffer for writing

the TLB Entry tag information. The Tag Access register may be updated during

either of the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection. The

MMU hardware automatically writes the missing VA and the appropriate

Context into the Tag Access register to facilitate formation of the TSB Tag

Target register. See Table 6-4 on page 51 for the SFSR and Tag Access

register update policy.

2. An ASI write to the Tag Access register. Before an ASI store to the TLB

Data Access registers, the operating system must set the Tag Access

register to the values desired in the TLB Entry. Note that an ASI store to the
Sun Microelectronics
62

6. MMU Internal Architecture
TLB Data In register for automatic replacement also uses the Tag Access

register, but typically the value written into the Tag Access register by the

MMU hardware is appropriate.

Note: Any update to the Tag Access registers immediately affects the data that

is returned from subsequent reads of the Tag Target and TSB Pointer registers.

The TLB Tag Access Registers are defined as follows:

Figure 6-10 I/D MMU TLB Tag Access Registers

I/D VA<63:13>: The 51-bit virtual page number. Note that writes to this field are

not checked for out-of-range violation, but sign extended based on VA<43>.

Warning – Stores to the Tag Access registers are not checked for out-of-range

violations. Reads from these registers are sign-extended based on VA<43>.

I/D Context<12:0>: The 13-bit context identifier. This field reads zero when there

is no associated context with the access.

6.9.8 I-/D-TSB 8 Kb/64 Kb Pointer and Direct Pointer Registers

These registers are provided to help the software determine the location of the

missing or trapping TTE in the software-maintained TSB. The TSB 8 Kb and 64

Kb Pointer registers provide the possible locations of the 8 Kb and 64 Kb TTE, re-

spectively. The Direct Pointer register is mapped by hardware to either the 8 Kb

or 64 Kb Pointer register in the case of a fast_data_access_protection exception ac-

cording to the known size of the trapping TTE. In the case of a 512 Kb or 4 Mb

page miss, the Direct Pointer register returns the pointer as if the miss were from

an 8 Kb page.

The TSB Pointer registers are implemented as a re-order of the current data

stored in the Tag Access register and the TSB register. If the Tag Access register or

TSB register is updated through a direct software write (via a STXA instruction),

then the Pointer registers values will be updated as well.

The bit that controls selection of 8K or 64K address formation for the Direct

Pointer register is a state bit in the D-MMU that is updated during a

data_access_protection exception. It records whether the page that hit in the TLB

was an 64K page or a non-64K page, in which case 8K is assumed.

63 0

VA<63:13> Context<12:0>

13 12
Sun Microelectronics
63

UltraSPARC User’s Manual
The I-/D-TSB 8 Kb/64 Kb Pointer registers are defined as follows:

Figure 6-11 I-/D-MMU TSB 8 Kb/64 Kb Pointer and D-MMU Direct Pointer Register

VA<63:0>: The full virtual address of the TTE in the TSB, as determined by the

MMU hardware. Described in Section 6.3.1, “Hardware Support for TSB

Access,” on page 45. Note that this field is sign-extended based on

VA<43>.

6.9.9 I-/D-TLB Data-In/Data-Access/Tag-Read Registers

Access to the TLB is complicated due to the need to provide an atomic write of a

TLB entry data item (tag and data) that is larger than 64 bits, the need to replace

entries automatically through the TLB entry replacement algorithm as well as

provide direct diagnostic access, and the need for hardware assist in the TLB miss

handler. Table 6-13 shows the effect of loads and stores on the Tag Access register

and the TLB.

Table 6-13 Effect of Loads and Stores on MMU Registers

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB tag TLB data Tag Access Register

Load

Tag Read
No effect.

Contents returned
No effect No effect

Tag Access No effect No effect
No effect.

Contents returned

Data In Trap with data_access_exception

Data Access No effect
No effect.

Contents returned
No effect

Store

Tag Read Trap with data_access_exception

Tag Access No effect No effect
Written with store

data

Data In

TLB entry determined by replace-

ment policy written with contents

of Tag Access Register

TLB entry determined by

replacement policy written

with store data

No effect

Data Access

TLB entry specified by STXA

address written with contents of

Tag Access Register

TLB entry specified by

STXA address written with

store data

No effect

TLB miss No effect No effect
Written with VA and

context of access

63 0

VA<63:0>
Sun Microelectronics
64

6. MMU Internal Architecture
The Data In and Data Access registers are the means of reading and writing the

TLB for all operations. The TLB Data In register is used for TLB-miss and TSB-

miss handler automatic replacement writes; the TLB Data Access register is used

for operating system and diagnostic directed writes (writes to a specific TLB en-

try). Both types of registers have the same format, as follows:

Figure 6-12 MMU I-/D-TLB Data In/Access Registers

Refer to the description of the TTE data in Section 6.2, “Translation Table Entry

(TTE),” on page 41, for a complete description of the above data fields.

Operations to the TLB Data In register require the virtual address to be set to ze-

ro. The format of the TLB Data Access register virtual address is as follows:

Figure 6-13 MMU TLB Data Access Address, in Alternate Space

TLB Entry: The TLB Entry number to be accessed, in the range 0 ..63.

The format for the Tag Read register is as follows:

Figure 6-14 I-/D-MMU TLB Tag Read Registers

I/D VA<63:13>: The 51-bit virtual page number. Page offset bits for larger page

sizes are stored in the TLB and returned for a Tag Read register read, but

ignored during normal translation; that is, VA<15:13>, VA<18:13>, and

VA<21:13> for 64Kb, 512Kb and 4Mb pages, respectively. Note that this

field is sign-extended based on VA<43>.

I/D Context<12:0>: The 13-bit context identifier.

An ASI store to the TLB Data Access register initiates an internal atomic write to

the specified TLB Entry. The TLB entry data is obtained from the store data, and

the TLB entry tag is obtained from the current contents of the TLB Tag Access

register.

63 0

PA<40:13> G

13 7 1

W

2

P

3

E

4

CV

5

CP

6

LSoft

1241 4050

Diag

4959

Soft2

5861

IE

60

NFOSize

62

V

63 0

000

9 8 3 2

TLB Entry—

63 0

VA<63:13> Context<12:0>

13 12
Sun Microelectronics
65

UltraSPARC User’s Manual
An ASI store to the TLB Data In register initiates an automatic atomic replace-

ment of the TLB Entry pointed to by the current contents of the TLB Replacement

register “Replace” field. The TLB data and tag are formed as in the case of an ASI

store to the TLB Data Access register described above.

Warning – Stores to the Data In register are not guaranteed to replace the

previous TLB entry causing a fault. In particular, to change an entry’s attribute

bits, software must explicitly demap the old entry before writing the new entry;

otherwise, a multiple match error condition can result.

An ASI load from the TLB Data Access register initiates an internal read of the

data portion of the specified TLB entry.

An ASI load from the TLB Tag Read register initiates an internal read of the tag

portion of the specified TLB entry.

ASI loads from the TLB Data In register are not supported.

6.9.10 I-/D-MMU Demap

Demap is an MMU operation, as opposed to a register as described above. The

purpose of Demap is to remove zero, one, or more entries in the TLB. Two types

of Demap operation are provided: Demap page, and Demap context. Demap

page removes zero or one TLB entry that matches exactly the specified virtual

page number. Demap page may in fact remove more than one TLB entry in the

condition of a multiple TLB match, but this is an error condition of the TLB and

has undefined results. Demap context removes zero, one, or many TLB entries

that match the specified context identifier.

Demap is initiated by a STXA with ASI=5716 for I-MMU demap or 5F16 for

D-MMU demap. It removes TLB entries from an on-chip TLB. UltraSPARC does

not support bus-based demap. Figure 6-15 shows the Demap format:

Figure 6-15 MMU Demap Operation Format

0000Context

012
Address

Data

3463 13

ignored

7 56

Type

063

VA<63:13>

—

Sun Microelectronics
66

6. MMU Internal Architecture
VA<63:12>: The virtual page number of the TTE to be removed from the TLB.

This field is not used by the MMU for the Demap Context operation, but

must be in-range. The virtual address for demap is checked for out-of-

range violations, in the same manner as any normal MMU access.

Type: The type of demap operation, as described in Table 6-14:

Context ID: Context register selection, as described in Table 6-15. Use of the

reserved value causes the demap to be ignored.

Ignored: This field is ignored by hardware. (The common case is for the demap

address and data to be identical.)

A demap operation does not invalidate the TSB in memory. It is the responsibility

of the software to modify the appropriate TTEs in the TSB before initiating any

Demap operation.

Note: A STXA to the data demap registers requires either a MEMBAR #Sync ,

FLUSH, DONE, or RETRY before the point that the effect must be visible to data

accesses. A STXA to the I-MMU demap registers requires a FLUSH, DONE, or

RETRY before the point that the effect must be visible to instruction accesses; that

is, MEMBAR #Sync is not sufficient. In either case, one of these instructions must

be executed before the next translating or bypass store or load of any type. This is

necessary to avoid corrupting data.

The demap operation does not depend on the value of any entry’s lock bit; that

is, a demap operation demaps locked entries just as it demaps unlocked entries.

The demap operation produces no output.

Table 6-14 MMU Demap operation Type Field Description

Type Field Demap Operation

0 Demap Page

1 Demap Context

Table 6-15 MMU Demap Operation Context Field Description

Context ID Field Context Used in Demap

00 Primary

01 Secondary

10 Nucleus

11 Reserved
Sun Microelectronics
67

UltraSPARC User’s Manual
6.9.11 I-/D-Demap Page (Type=0)

Demap Page removes the TTE (from the specified TLB) matching the specified

virtual page number and context register. The match condition with regard to the

global bit is the same as a normal TLB access; that is, if the global bit is set, the

contexts need not match.

Virtual page offset bits <15:13>, <18:13>, and <21:13>, for 64Kb, 512Mb, and 4M

bpage TLB entries, respectively, are stored in the TLB, but do not participate in

the match for that entry. This is the same condition as for a translation match.

Note: Each Demap Page operation removes only one TLB entry. A demap of a

64 Kb, 512 Kb, or 4 Mb page does not demap any smaller page within the

specified virtual address range.

6.9.12 I-/D-Demap Context (Type=1)

Demap Context removes all TTEs having the specified context from the specified

TLB. If the TTE Global bit is set, the TTE is not removed.

6.10 MMU Bypass Mode

In a bypass access, the D-MMU sets the physical address equal to the truncated

virtual address; that is, PA<40:0>=VA<40:0>. The physical page attribute bits are

set as shown in Table 6-16.

Bypass applies to the I-MMU only when it is disabled. See Section 6.7, “MMU Be-

havior During Reset, MMU Disable, and RED_state,” on page 54 for details on

the use of bypass when either MMU is disabled.

Compatibility Note:
In UltraSPARC the virtual address is longer than the physical address; thus,
there is no need to use multiple ASIs to fill in the high-order physical address bits,
as is done in SPARC-V8 machines.

Table 6-16 Physical Page Attribute Bits for MMU Bypass Mode

ASI
Physical Page Attribute Bits

CP IE CV E P W NFO Size

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE
1 0 0 0 0 1 0 8Kb

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE
0 0 0 1 0 1 0 8Kb
Sun Microelectronics
68

6. MMU Internal Architecture
6.11 TLB Hardware

6.11.1 TLB Operations

The TLB supports exactly one of the following operations per clock cycle:

• Normal translation. The TLB receives a virtual address and a context identifier

as input and produces a physical address and page attributes as output.

• Bypass. The TLB receives a virtual address as input and produces a physical

address equal to the truncated virtual address page attributes as output.

• Demap operation. The TLB receives a virtual address and a context identifier

as input and sets the Valid bit to zero for any entry matching the demap page

or demap context criteria. This operation produces no output.

• Read operation. The TLB reads either the CAM or RAM portion of the

specified entry. (Since the TLB entry is greater than 64 bits, the CAM and

RAM portions must be returned in separate reads. See Section 6.9.9, “I-/D-

TLB Data-In/Data-Access/Tag-Read Registers,” on page 64.)

• Write operation. The TLB simultaneously writes the CAM and RAM portion

of the specified entry, or the entry given by the replacement policy described

in Section 6.11.2 .

• No operation. The TLB performs no operation.

6.11.2 TLB Replacement Policy

UltraSPARC uses a 1-bit LRU scheme, very similar to that used in SuperSPARC.

Each TLB entry has an associated “valid,” “used,” and “lock” bit. On an automat-

ic write to the TLB initiated through an ASI store to register TLB Data In, the TLB

picks the entry to write based on the following rules:

1. The first invalid entry will be replaced (measuring from TLB entry 0). If

there is no invalid entry, then:

2. The first unused entry with its lock bit set to zero will be replaced

(measuring from TLB entry 0). If no unused entry has its lock bit set to

zero, then:

3. All used bits are reset, and the process is repeated from Step 2 above.

Arbitrary entries may have their lock bit set, however, operation of the TLB is un-

defined if all entries have their lock bit set.
Sun Microelectronics
69

UltraSPARC User’s Manual
Due to the implementation of the UltraSPARC pipeline, the MMU can and will

set a TLB entry’s used bit as if the entry were hit when the load or store is an an-

nulled or mispredicted instruction. This can be considered to cause a very slight

performance degradation in the replacement algorithm, although it may also be

argued that it is desirable to keep these extra entries in the TLB.

6.11.3 TSB Pointer Logic Hardware Description

The hardware diagram in Figure 6-16 on page 70 and the code fragment in

Code Example 6-1 on page 71 describe the generation of the 8 Kb and 64 Kb

pointers in more detail.

Figure 6-16 Formation of TSB Pointers for 8Kb and 64Kb TTEs

03

0 0 0 0

20 12132163

Pointer

9

TSB_Split

64k_not8k
TSB_Size<2:0>

8

TSB_Base<63:21>

TSB Size Logic

TSB Size Logic For Bit N (0 ≤ N ≤ 7)

64k_not8k

64k
VA<25+N>

8k
VA<22+N>

(N=TSB_Size)&&TSB_Split

TSB_Base<13+N>64k_not8k

64k_not8k

64k
VA<24:16>

8k
VA<21:13>

VA<32:22>TSB_Base<20:13>

43

07

N ≥ TSB_Size
Sun Microelectronics
70

6. MMU Internal Architecture
Code Example 6-1 Pseudo-code for UltraSPARC D-MMU Pointer Logic

int64 GenerateTSBPointer(

int64 va, // Missing virtual address

PointerType type, // 8K_POINTER or 64K_POINTER

int64 TSBBase, // TSB Register<63:13> << 13

Boolean split, // TSB Register<12>

int TSBSize) // TSB Register<2:0>

{

int64 vaPortion;

int64 TSBBaseMask;

int64 splitMask;

// TSBBaseMask marks the bits from TSB Base Reg

TSBBaseMask = 0xffffffffffffe000 <<

(split? (TSBSize + 1) : TSBSize);

// Shift va towards lsb appropriately and

// zero out the original va page offset

vaPortion = (va >> ((type == 8K_POINTER)? 9: 12)) &

0xfffffffffffffff0;

if (split) {

// There’s only one bit in question for split

splitMask = 1 << (13 + TSBSize);

if (type == 8K_POINTER)

// Make sure we’re in the lower half

vaPortion &= ~splitMask;

else

// Make sure we’re in the upper half

vaPortion |= splitMask;

}

return (TSBBase & TSBBaseMask) | (vaPortion & ~TSBBaseMask);

}

Sun Microelectronics
71

UltraSPARC User’s Manual
Sun Microelectronics
72

UltraSPARC External Interfaces 7
7.1 Introduction
This chapter describes the interaction of the UltraSPARC CPU with the external

cache (E-Cache), the UltraSPARC Data Buffer (UDB), and the remainder of the

system.

See Appendix E, “Pin and Signal Descriptions,” for a description of the external

interface pins and signals (including buses, control signals, clock inputs, etc.)

See the UltraSPARC-I Data Sheet for information about the electrical and mechan-

ical characteristics of the processor, including pin and pad assignments. The Bib-

liography on page 363 describes how to obtain the data sheet.

7.2 Overview of UltraSPARC External Interfaces
Figure 7-1 on page 74 shows the UltraSPARC’s main interfaces. Model-dependent

interface lengths are labeled in italics, instead of being numbered; Table 7-3 shows

the number of bits in each labeled interface.

A typical module includes an E-Cache composed of the tag part and the data

part, both of which can be implemented using commodity RAMs. Separate ad-

dress and data buses are provided to and from the tag and data RAMs for in-

creased performance.

Table 7-1 Model-Dependent Interface Sizes

Number of Bits in Interface

Interface Label UltraSPARC-I UltraSPARC-II

E$TagAddrBits 16 18

E$DataAddrBits 18 20
Sun Microelectronics
73

UltraSPARC User’s Manual
The UltraSPARC Data Buffer isolates UltraSPARC and its E-Cache from the main

system data bus, so the interface can operate at processor speed (reduced load-

ing). The UDB also provides overlapping between system transactions and local

E-Cache transactions, even when the latter needs to use part of the data buffer.

UltraSPARC includes the logic to control the UDB; this provides fast data trans-

fers to and from UltraSPARC or to and from the E-Cache and the system. A sep-

arate address bus and separate control signals support system transactions.

Figure 7-1 Main UltraSPARC Interfaces

UltraSPARC is both an interconnect master and an interconnect slave.

• As an interconnect master, UltraSPARC issues read/write transactions to the

interconnect using part of the transaction set (Section 7.5). As a master, it also

has physically addressed coherent caches, which participate in the cache

coherence protocol, and respond to the interconnect for copyback and

invalidation requests.

E-Cache Tag

E-Cache Tag Data

E-Cache Data

Byte Write Enable

E-Cache Data Bus

System Data Bus

System Address

P_REPLY

S_REPLY

Clocks,
Reset, etc.

Observability,
JTAG, etc.

15

E$TagAddrBits

22+3 state + 4 parity

16

128 + 16 parity

128 +16 ECC

E-Cache Tag

RAM

E-Cache Data

RAM4

5

UDB
Control

5

S
Y
S
T
E
M

35+parity

4

Arbitration

6

UltraSPARC

Address

Address

UltraSPARC
Data
Buffer

E$DataAddrBits
Sun Microelectronics
74

7. UltraSPARC External Interfaces
• As an interconnect slave, UltraSPARC responds to noncached reads of its

interconnect port ID, which are generated by other UltraSPARCs on the

interconnect. Slave Writes to UltraSPARC are not supported.

UltraSPARC is both an interrupter and an interrupt receiver. It can generate inter-

rupt requests to other interrupt receivers, and it can receive interrupt requests

from other interrupters. UltraSPARC cannot send an interrupt to itself.

7.2.1 The System Data Bus (SYSDATA)

SYSDATA is a 128-bit bidirectional data bus, with 16 additional bits dedicated to

ECC. Each chip within the two-chip UDB handles 64 bits of SYSDATA. The ECC

bits are divided into two 8-bit halves, one for each 64-bit half of SYSDATA.

The ECC bits use Shigeo Kaneda’s 64-bit SEC-DED-SbED code. (Kaneda’s paper

discussing this algorithm is documented in the Bibliography.) The UDBs generate

ECC when sending data and check the ECC when receiving data.

The SYSDATA transaction set supports both 64-byte block transfers and 1..16-

byte single quadword noncached transfers. Single quadword transfers are quali-

fied with a 16-bit bytemask, included with the original transfer request. Data is

always transferred in units of 16 bytes/clock-cycle on SYSDATA.

Note: In this chapter, 64-byte transfers on SYSDATA are called “block reads”

and “block writes.” Do not confuse these with “block loads” and “block stores,”

which are extended instructions in the UltraSPARC instruction set.

The system uses the S_REPLY pins to initiate the data part of data transfers be-

tween the System Data Bus and UltraSPARC. For block transfers, if the system

cannot read or write successive quadwords in successive clock cycles, it asserts

the Data_Stall signal to UltraSPARC.
Sun Microelectronics
75

UltraSPARC User’s Manual
Figure 7-2 illustrates how data and ECC bytes are arranged and addressed within

a quadword (for big-endian accesses).

Figure 7-2 Data and ECC Byte Addresses Within a Quadword

For coherent block read and copyback transactions of 64-byte datums, the ad-

dressed quad-word (16 bytes) selected by physical address bits PA<5:4> is deliv-

ered first. Successive quadwords are delivered in the order shown below.

Noncached block reads and all block writes of 64-byte datums are always aligned

on a 64-byte block boundary (PA<5:4>=0).

7.3 Interaction Between E-Cache and UDB

7.3.1 Overview

The UDB isolates the UltraSPARC from SYSDATA(Figure 7-1). The UDB provides

data buffers to minimize the overhead of data transfers from UltraSPARC to the

system by hiding system latency (for example, for Writebacks and noncacheable

stores). The UDB supports multiple outstanding transactions to increase overall

bandwidth. The UDB also handles interrupt packets. Finally, the UDB generates

and checks ECC bits on each data transfer.

Table 7-2 Quadword Ordering

Address
PA<5:4>

1st Quadword
on SYSDATA

2nd Quadword
on SYSDATA

3rd Quadword
on SYSDATA

4th Quadword
on SYSDATA

016 Qword 0 Qword 1 Qword 2 Qword 3

116 Qword 1 Qword 0 Qword 3 Qword 2

216 Qword 2 Qword 3 Qword 0 Qword 1

316 Qword 3 Qword 2 Qword 1 Qword 0

07815

07815162324313239404748555663

647172798087889596103104111112119120127

Byte 0 Byte 1 Byte 7Byte 6Byte 2 Byte 3 Byte 4 Byte 5

Byte 8 Byte 9 Byte 15Byte 14Byte 10 Byte 11 Byte 12 Byte 13

For Bytes For Bytes
0 - 7 8 - 15

ECC ECC

Quad Lo Bytes

Quad Hi Bytes

ECC Bytes
Sun Microelectronics
76

7. UltraSPARC External Interfaces
The E-Cache consists of two parts:

• The E-Cache Tag RAMs, which contain the physical tags of the cached lines,

along with a small amount of state information, and

• The E-Cache Data RAMs, which contain the actual data for each cache line.

The E-Cache RAMs are commodity parts (synchronous static RAMs) that operate

synchronously with UltraSPARC. Each byte within the E-Cache RAMs is protect-

ed by a parity bit; there are three parity bits for the tags and 16 parity bits for da-

ta. Table 7-3 lists the E-Cache sizes that each UltraSPARC model supports.

Note: Software can determine the E-Cache size at boot time by probing with

diagnostic writes to addresses 2k, 2k+1, 2k+2 . . . until wrap-around occurs.

The E-Cache’s clients are:

• Load buffer: All loads that miss the D-Cache are sent on to the E-Cache.

• Store buffer: All cacheable stores go to the E-Cache (because the D-Cache is

write-through); the order of stores with respect to loads is determined by the

memory ordering model.

• Prefetch unit: All I-Cache misses generate a request to the E-Cache.

• UDB: The UDB returns data from main memory during E-Cache misses or

loads to noncacheable locations. Writebacks (the process of writing a dirty line

back to memory before it is refilled), generate data transfers from the E-Cache

to the UDB, controlled entirely by the CPU. Copyback requests from the

system also generate transfers from the E-Cache to the UDB.

E-Cache client transactions have the following relative priorities:

• The request for the second 16 bytes of data from the I-Cache/Prefetch Unit.

• External Cache Unit (ECU) requests.

• Load buffer requests.

Table 7-3 Supported E-Cache Sizes (Same as Table 1-5)

E-Cache Size UltraSPARC-I UltraSPARC-II

512 Kb ✓ ✓

1 Mb ✓ ✓

2 Mb ✓ ✓

4 Mb ✓ ✓

8 Mb ✓

16 Mb ✓
Sun Microelectronics
77

UltraSPARC User’s Manual
• Store buffer requests. The store buffer priority is made higher than the load

buffer priority when the store buffer reaches five entries; it remains higher

until the number of entries drops to two.

• The request for the first 16 bytes of data from the I-Cache/Prefetch Unit. After

the first clock of an I-Cache request, its priority becomes higher than load and

store buffer requests.

The UDB contains:

• A read buffer that holds a model-dependent number of 64-byte lines coming

from main memory; these satisfy E-Cache read misses or noncacheable reads.

Table 7-3 shows the supported buffer depth for each UltraSPARC model.

• A model-dependent number of 64-byte buffers to hold writebacks, block

stores, and outgoing interrupt vectors. The writeback buffer(s) are in the

coherence domain; consequently, it can be used to satisfy copyback requests

from the system. Table 7-5 shows the number of Writeback buffer entries for

each UltraSPARC model. Note: Models that support more than one Writeback

buffer entry can be restricted to using only one entry.

• Eight 16-byte noncacheable store buffers.

• A 24-byte buffer to hold an incoming Interrupt Vector. (Each UDB chip

contains a 24-byte interrupt vector buffer, but only one buffer is used.)

7.3.2 UltraSPARC E-Cache and UDB Transactions

This section describes transactions occurring between UltraSPARC, the E-Cache,

and the UDB. Interconnect transactions are described in a later section. Transi-

tions in the timing diagrams show what is seen at the pins of UltraSPARC.

Cache line states are defined in Section 7.6, “Cache Coherence Protocol,” on page

94. Signals are defined in Appendix E, “Pin and Signal Descriptions.”

Table 7-4 Supported Read Buffer Depth

UltraSPARC-I UltraSPARC-II

of Entries 1 3

Table 7-5 Supported Number of Writeback Buffer Entries

UltraSPARC-I UltraSPARC-II

of Entries 1 2
Sun Microelectronics
78

7. UltraSPARC External Interfaces
7.3.2.1 Coherent Read Hit (1–1–1 and 2–2 Modes)

Figure 7-3 shows the 1–1–1 Mode timing for coherent reads that hit the E-Cache.

UltraSPARC makes no distinction between burst reads (which are supported by

some RAMs) and two consecutive reads; the signals used for a single read are du-

plicated for each subsequent read.

Figure 7-3 Timing for Coherent Read Hit (1–1–1 Mode)

The timing diagram shows three consecutive reads that hit the E-Cache. The con-

trol signal (TOE_L) and the address for the tag read (ECAT) as well as the control

signal (DOE_L) and the address for the data (ECAD) are shown to transition

shortly after the rising edge of the clock. Two cycles later, the data for both the

tag read and data read is back at the pins of the CPU shortly before the next ris-

ing edge (which meets the set up time and clock skew requirements). Notice that

the reads are fully pipelined; thus, full throughput is achieved. Three requests are

made before the data of the first request comes back, and the latency of each re-

quest is three cycles.

Figure 7-4 on page 80 shows the 2–2 Mode timing for three consecutive coherent

reads that hit the E-Cache. The control signal (TOE_L) and the address for the tag

read (ECAT) as well as the control signal (DOE_L) and the address for the data

(ECAD) are shown to transition shortly after the rising edge of the clock. One cy-

cle later, the data for both the tag read and data read is back at the pins of the

CPU shortly before the next rising edge (which meets the set up time and clock

skew requirements). Two requests are made before the data of the first request

comes back, and the latency of each request is two cycles.

CLK

CYCLE 0 1 2 3 4 5 6

TSYN_WR_L R0 R1 R2

TOE_L R0 R1 R2

ECAT A0_tag A1_tag A2_tag

TDATA D0_tag D1_tag D2_tag

DSYN_WR_L R0 R1 R2

DOE_L R0 R1 R2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data
Sun Microelectronics
79

UltraSPARC User’s Manual
Figure 7-4 Timing for Coherent Read Hit (2–2 Mode)

7.3.2.2 Coherent Write Hits (1–1–1 and 2–2 Modes)

Writes to the E-Cache are processed through independent tag and data transac-

tions. First, UltraSPARC reads the tag and state bits of the E-Cache line. If the ac-

cess is a hit and the tag state is Exclusive (E) or Modified (M), UltraSPARC writes

the data to the data RAM.

Figure 7-5 on page 81 shows the 1–1–1 Mode timing for three consecutive write

hits to M state lines. Access to the first tag (D0_tag) is started by asserting TOE_L

and by sending the tag address (A0_tag). In the cycle after the tag data (D0_tag)

comes back, UltraSPARC determines that the access is a hit and that the line is in

Modified (M) state. In the next clock, a request is made to write the data. The

data address is presented on the ECAD pins in the cycle after the request (cycle 6

for W0) and the data is sent in the following cycle (cycle 7). Separating the ad-

dress and the data by one cycle reduces the turn-around penalty when reads are

followed immediately by writes (discussed in Section 7.3.2.4, “Coherent Read

Followed by Coherent Write).

Figure 7-6 on page 81 shows the 2–2 Mode timing for three consecutive write hits

to M state lines. Access to the first tag (D0_tag) is started by asserting TOE_L and

by sending the tag address (A0_tag). In the cycle after the tag data (D0_tag)

comes back, UltraSPARC determines that the access is a hit and that the line is in

Modified (M) state. In the next clock, a request is made to write the data. The

SRAM CYCLE 0 1 2 3 4 5 6

TSYN_WR_L R0 R1 R2

TOE_L R0 R1 R2

ECAT A0_tag A1_tag A2_tag

TDATA D0_tag D1_tag D2_tag

DSYN_WR_L R0 R1 R2

DOE_L R0 R1 R2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data

CPU CLK

SRAM CLK
Sun Microelectronics
80

7. UltraSPARC External Interfaces
data address is presented on the ECAD pins in the cycle after the request (cycle 4

for W0) and the data is sent in the following cycle (cycle 5). Systems running in

2–2 Mode incur no read-to-write bus turnaround penalty.

Figure 7-5 Timing for Coherent Write Hit to M State Line (1–1–1 Mode)

Figure 7-6 Timing for Coherent Write Hit to M State Line (2–2 Mode)

If the line is in Exclusive (E) state, the tag is updated to Modified (M) state at the

same time that the data is written, as shown in Figure 7-7 on page 82 (1–1–1

Mode).

CLK

CYCLE 0 1 2 3 4 5 6 7 8 9

TSYN_WR_L R0 R1 R2

TOE_L R0 R1 R2

ECAT A0_tag A1_tag A2_tag

TDATA D0_tag D1_tag D2_tag

DSYN_WR_L W0 W1 W2

DOE_L W0 W1 W2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data

SRAM CLK

SRAM CYCLE 0 1 2 3 4 5 6 7

TSYN_WR_L R0 R1 R2

TOE_L R0 R1 R2

ECAT A0_tag A1_tag A2_tag

TDATA D0_tag D1_tag D2_tag

DSYN_WR_L

DOE_L W0 W1 W2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data

CPU CLK

W0 W1 W2
Sun Microelectronics
81

UltraSPARC User’s Manual
Figure 7-7 Timing for Coherent Writes with E-to-M State Transition (1–1–1 Mode)

Otherwise, the tag port is available for a tag check of a younger store during the

data write. In the timing diagram shown in Figure 7-5 on page 81, the store buffer

is empty when the first write request is made, which is why there is no overlap

between the tag accesses and the write accesses. In normal operation, if the line is

in M state, the tag access for one write can be done in parallel with the data write

of previous write (E state updates cannot be overlapped). This independence of

the tag and data buses make the peak store bandwidth as high as the load band-

width (one per cycle). Figure 7-8 shows the 1–1–1 Mode overlap of tag and data

accesses. The data for three previous writes (W0, W1 and W2) is written while

three tag accesses (reads) are made for three younger stores (R3, R4 and R5).

Figure 7-8 Timing Overlap: Tag Access / Data Write for Coherent Writes (1–1–1 Mode)

If the line is in Shared (S) or Owned (O) state, a read for ownership is performed

before writing the data.

CLK

CYCLE 0 1 2 3 4 5 6 7 8 9

TSYN_WR_L R0 R1 R2 U0 U1 U2

TOE_L R0 R1 R2 U0 U1 U2

ECAT A0_tag A1_tag A2_tag

TDATA D0_tag D1_tag D2_tag

DSYN_WR_L W0 W1 W2

DOE_L W0 W1 W2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data

D0_tag D1_tag D2_tag

A0_tag A1_tag A2_tag

CLK

CYCLE 0 1 2 3 4 5 6 7

TSYN_WR_L R3 R4 R5

TOE_L R3 R4 R5

ECAT A3_tag A4_tag A5_tag

TDATA D3_tag D4_tag D5_tag

DSYN_WR_L W0 W1 W2

DOE_L W0 W1 W2

ECAD A0_data A1_data A2_data

EDATA D0_data D1_data D2_data
Sun Microelectronics
82

7. UltraSPARC External Interfaces
7.3.2.3 Coherent Write Misses

If a coherent write misses in the E-Cache, the corresponding cache line is victim-

ized. When the victimized line is dirty, a writeback transaction is scheduled. In

any case, a read-to-own transaction is scheduled for the required write address.

When the read completes, the new data overwrites it in the cache. Section 7.11.1,

“Clean Victim Handling” and Section 7.11.2, “Dirty Victim Handling,” discuss

this process in more detail.

7.3.2.4 Coherent Read Followed by Coherent Write

When a read is made to the E-Cache, the three cycle latency (1–1–1 Mode) causes

the data bus to be busy two cycles after the address appears at the pins. For a

processor without delayed writes, writes must be held for two cycles in order to

avoid collisions between the write data and the data coming back from the read.

Also, electrical considerations force an extra dead cycle while the E-Cache data

bus driver is switched from the SRAMs to the UltraSPARC. UltraSPARC uses a

one-deep write buffer in the data SRAMs to reduce the read-to-write turn-around

penalty to two cycles. The write data is sent one cycle after the address

(Figure 7-9). There is no penalty for write-to-read transitions.

Figure 7-9 shows the two cycle read-to-write turnaround penalty for 1–1–1 Mode.

The figure shows three reads followed by two writes and two tag updates. The

two cycle penalty applies to both tag accesses and data accesses (two stalled cy-

cles between A2_tag and A3_tag as well as between A2_data and A3_data). There

is no read-to-write turnaround penalty for 2–2 Mode.

Figure 7-9 Read-to-Write Bus Turnaround Penalty (1–1–1 Mode Only)

CLK

CYCLE 0 1 2 3 4 5 6 7 8

TSYN_WR_L W3 W4

TOE_L R0 R1 R2 W3 W4

ECAT A0_tag A1_tag A2_tag A3_tag A4_tag

TDATA D0_tag D1_tag D2_tag D3_tag D4_tag

DSYN_WR_L W3 W4

DOE_L R0 R1 R2 W3 W4

ECAD A0_data A1_data A2_data A3_data A4_data

EDATA D0_data D1_data D2_data D3_data D4_data

Staalls
Sun Microelectronics
83

UltraSPARC User’s Manual
7.4 SYSADDR Bus Arbitration Protocol
This section specifies the distributed arbitration protocol for driving a request

packet on the SYSADDR bus.

7.4.1 SYSADDR Bus Interconnection Topology

SYSADDR accommodates a maximum of four bus masters (which can be either

UltraSPARCs or I/O ports), as well as a System Controller (SC).

A master UltraSPARC cannot send a request directly to a slave. All transactions

are received by the SC and either serviced directly or forwarded to the proper re-

cipient. The SC delivers a transaction to a specific interconnect slave interface by

asserting that slave’s unique Addr_Valid signal. Note that in this discussion,

Memory is considered a slave.

A distributed arbitration protocol determines the current driver for the

SYSADDR bus and Addr_Valid. Although each Addr_Valid has only two poten-

tial drivers, the same enable logic can and should be used for both. Holding am-

plifiers in the System Controller must maintain the last state of Addr_Valid

whenever UltraSPARC or the SC stop driving it.

Figure 7-10 illustrates the interconnection topology for the SYSADDR bus. With

this topology, the arbiter logic can be implemented efficiently, without any inter-

nal muxing or demuxing of the input or output request signals.

Figure 7-10 SYSADDR Bus Interconnection Topology

SC_RQ
Req<3>
Req<2>
Req<1>
Req<0>

SYSADDR<35:0>

System Controller

Addr_Valid<3>
Addr_Valid<2>
Addr_Valid<1>
Addr_Valid<0>

port_ID<4:0> port_ID<4:0> port_ID<4:0> port_ID<4:0>
1:0=0 1:0=1 1:0=2 1:0=3

N
od

e_
R

Q
<

2>
N

od
e_

R
Q

<
1>

N
od

e_
R

Q
<

0>

N
od

e_
R

Q
<

2>

N
od

e_
R

Q
<

2>

N
od

e_
R

Q
<

2>

N
od

e_
R

Q
<

1>

N
od

e_
R

Q
<

1>

N
od

e_
R

Q
<

1>

N
od

e_
R

Q
<

0>

N
od

e_
R

Q
<

0>

N
od

e_
R

Q
<

0>

N
od

ex
_R

Q

N
od

ex
_R

Q

N
od

ex
_R

Q

N
od

ex
_R

Q

RESET_L

UltraSPARC0 UltraSPARC1 UltraSPARC2 UltraSPARC3

S
C

_R
Q

S
C

_R
Q

S
C

_R
Q

S
C

_R
Q

R
E

S
E

T
_L

R
E

S
E

T
_L

R
E

S
E

T
_L

R
E

S
E

T
_L

A
dd

r_
V

al
id

<
3>

A
dd

r_
V

al
id

<
1>

A
dd

r_
V

al
id

<
2>

A
dd

r_
V

al
id

<
0>
Sun Microelectronics
84

7. UltraSPARC External Interfaces
7.4.2 Distributed Arbitration

The SYSADDR bus uses a distributed arbitration protocol to provide the lowest

possible latency for bus ownership, at the same time meeting the minimum cycle

time requirements of the interconnect.

The arbitration protocol has the following features:

• Fully synchronous arbitration.

• Distributed protocol. All contenders simultaneously calculate the next allowed

driver.

• Round Robin among the UltraSPARC ports. Note, however, that requests from

the System Controller preempt the round robin and always get the highest

priority. The round robin among the UltraSPARC ports resumes when the SC

is finished.

• The arbitration protocol enforces a dead cycle on the SYSADDR bus when

switching drivers. This allows sufficient time for the first driver to shut off in

the dead cycle before the next driver turns on.

• All request signals are registered before use inside the SC or UltraSPARC. All

tristate output enables for the SYSADDR bus and Addr_Valid are registered.

This requires the protocol to be described as a pipeline, where only the state of

the request signals in the last cycle can affect the driver for the next cycle.

7.4.3 Arbitration Signals

The arbitration protocol uses the following signals for each UltraSPARC (See

Figure 7-10 on page 84):

• Nodex_RQ signal for the UltraSPARC’s own request

• SC_RQ signal for request from the system controller

• Node_RQ<2:0> signal for request from up to three other UltraSPARCs on

SYSADDR

• Each UltraSPARC uses the two low order bits <1:0> from its port_ID<4:0>
pins for self identification in the arbitration algorithm. Thus, all UltraSPARCs

sharing SYSADDR must have unique values for port_ID<1:0>.

• Addr_Valid<0..3>. Allows the SC to indicate to a particular slave that it is the

recipient of a packet. Each UltraSPARC has a unique copy of Addr_Valid. It is

driven either by the UltraSPARC or the SC. Addr_Valid is asserted during the

first cycle of any packet.
Sun Microelectronics
85

UltraSPARC User’s Manual
Addr_Valid is driven following the same rules as SYSADDR signals.

Addr_Valid must be deasserted in the last cycle it is driven. The SC must

contain a holding amplifier to maintain the previously asserted state of

each Addr_Valid signal when it is undriven.

7.4.3.1 Arbitration Rules

The interface that is currently driving (or allowed to drive) SYSADDR and

Addr_Valid is called the CURRENT DRIVER. The interface that drove (or was al-

lowed to drive) SYSADDR and Addr_Valid during the previous cycle is called

the LAST PORT DRIVER. Note that the System Controller can become the CURRENT

DRIVER, but it is never the LAST PORT DRIVER. When SC relinquishes the control

after its transaction has completed, the value of LAST PORT DRIVER is the value of

the interface that last drove the bus before the SC.

The arbitration protocol has the following rules:

1. After reset, the UltraSPARC with port_ID<1:0>=0 is the initial LAST PORT

DRIVER.

2. None of the interconnect masters or the SC may assert their requests until

44 processor cycles following the de-assertion of RESET_L.

3. The UltraSPARC for which LAST PORT DRIVER=port_ID<1:0> can take

advantage of a rule that allows request, then drive. Otherwise, the

UltraSPARC will minimally see a request, wait, then drive latency. The SC

will always see this minimal latency, since it is not included as a potential

LAST PORT DRIVER.

4. If no requests were asserted during the last cycle, the next cycle’s value for

LAST PORT DRIVER remains the same as this cycle’s value.

5. If an UltraSPARC sees that LAST PORT DRIVER equals its port_id<1:0>, it

may assert its request in next cycle and drive a packet in the cycle after

that. This reduced-latency-to-drive condition is disabled if any other

requests are asserted during the cycle before request assertion.

Since the arbiter logic can use only registered requests, the reduced-

latency-to-drive condition actually would be disabled during the next

cycle, and the port would rely on the normal arbitration logic of rule 9,

which adds one more cycle of latency.

6. The CURRENT DRIVER relinquishes ownership of the bus by deasserting its

request for one cycle in the presence of another SC or interconnect request.

This is a performance requirement.
Sun Microelectronics
86

7. UltraSPARC External Interfaces
7. The CURRENT DRIVER may drive SYSADDR at any time up to and including

the cycle in which it deasserts its request.

8. If the CURRENT DRIVER’s request was deasserted during the last cycle and

one or more other requests were asserted, arbitration occurs during this

cycle to decide who can drive during the next cycle.

9. During an arbitration cycle, the highest priority request from the last cycle

is determined, as shown in Table 7-6. During the next cycle, the value of

CURRENT DRIVER is changed to match the highest priority request.

During the next cycle, the value of LAST PORT DRIVER will change to the

value of CURRENT DRIVER, unless the SC is the new CURRENT DRIVER. In

this case, LAST PORT DRIVER retains its current state.

Note that the round robin protocol is unfair by design, favoring the LAST

PORT DRIVER. This feature is required; it enables the request-then-drive rule

for the LAST PORT DRIVER, since the LAST PORT DRIVER can drive without

being dependent on possible simultaneously asserted requests. Fairness is

provided by the release request in presence of another request rule; for

example, a request from another port.

10. If during an arbitration cycle, an SC request was asserted last cycle, it has

the highest priority and SC becomes the CURRENT DRIVER next cycle. The

SC request does not modify the LAST PORT DRIVER variable and does not

affect the round-robin turn for other interconnect ports, as shown in

Table 7-6.

7.4.3.2 Latency Optimization in Uniprocessor Systems

Normally the CURRENT DRIVER must drop its request when it has no more pend-

ing requests. This rule minimizes the arbitration latency for other bus masters.

In uniprocessor systems, where SYSADDR is shared only by one processor, the

SC, and at most one I/O device, it is advantageous to minimize the latency for

the processor at the expense of latency for SC or the I/O device. To support this,

Table 7-6 Round Robin Arbitration Priority, without SC Request

LAST PORT DRIVER
Arbitration Priority
Highest-to-Lowest

 port_ID=0 0 1 2 3

 port_ID=1 1 2 3 0

 port_ID=2 2 3 0 1

 port_ID=3 3 0 1 2
Sun Microelectronics
87

UltraSPARC User’s Manual
UltraSPARC has a mode that keeps its request asserted on the bus until it sees an-

other request on the bus, even if it has no more pending requests. This eliminates

one cycle of arbitration latency. This mode is enabled by hard-wiring any of the

unused Node_RQ<N> lines to logical ‘1’. UltraSPARC detects this condition dur-

ing Power-On Reset processing.

Once UltraSPARC gives up the bus to another device, it gets it back only when it

initiates another bus request. Since the UltraSPARC is the most active device on

the bus in a uniprocessor system, it is highly probable that it will be parked on

the bus.

The arbitration cycle for the SC and I/O device is delayed until UltraSPARC

drops its request when it sees the new request. Thus, these devices pay a latency

penalty to access the bus.

7.4.3.3 Rules for Addr_Valid

Addr_Valid is a radial bidirectional signal between each UltraSPARC and SC, as

shown in Figure 7-10. It is driven by the CURRENT DRIVER. Addr_Valid tells the

SC when the CURRENT DRIVER is driving a valid packet; it is needed because the

CURRENT DRIVER may keep its request asserted for longer than the minimum time

required to deliver a packet or packets.

When the SC is CURRENT DRIVER, Addr_Valid informs a port that it should re-

ceive a packet from the SYSADDR bus.

Rules for the assertion/deassertion of Addr_Valid:

1. During reset, SC drives all Addr_Valid signals to a deasserted state and

releases them when RESET_L is deasserted. This initializes the holding

amplifiers to a known state.

2. Addr_Valid is asserted for the first cycle of each two-cycle packet; it is

deasserted for the second cycle.

3. The value of Addr_Valid must be maintained by holding amplifiers in the

SC when there is no active driver. Any UltraSPARC that drives Addr_Valid
always drives it low (deasserted) before releasing it. Thus, the holding

amplifier holds it in the low state.

4. UltraSPARC drives Addr_Valid during the entire time it is CURRENT

DRIVER.

5. The UltraSPARC or SC must have driven Addr_Valid low in or before the

last cycle it is CURRENT DRIVER. See Figure 7-14 on page 90.
Sun Microelectronics
88

7. UltraSPARC External Interfaces
7.4.3.4 Arbitration Timing

Figures 7-12 through 7-18 illustrate the arbitration protocol timing. They also

show how SYSADDR ownership changes from requestor to requestor.

The figures show the minimum arbitration latencies, which are as follows:

• 0 cycles if UltraSPARC or SC is CURRENT DRIVER (FIGURE 7-11)

• 1 cycle if UltraSPARC is the LAST PORT DRIVER (Figure 7-12)

• 2 cycles if not the LAST PORT DRIVER (Figure 7-13)

• 4 cycles if the CURRENT DRIVER must be forced off (Figure 7-14)

Figure 7-12 shows the timing in a uniprocessor system, with the UltraSPARC

driving back-to-back packets in the absence of a request from SC.

Figure 7-11 Uniprocessor: Back-to-Back Packets—No SC Request

Figure 7-12 shows the timing for a single UltraSPARC driving back-to-back pack-

ets in the absence of another request.

Figure 7-12 Arbitration: Back-to-Back Packets—No Other Requests

Req<0>

SYSADDR

Addr_Valid<0>

Cycle 0 Cycle 1 Cycle 0 Cycle 1

0 0 0 0 0LAST PORT DRIVER

Req<0>

Req<1>

SYSADDR

Addr_Valid<0>

Addr_Valid<1>

Cycle 0 Cycle 1 Cycle 0 Cycle 1
Sun Microelectronics
89

UltraSPARC User’s Manual
Figure 7-13 shows the timing when the ownership changes between two

UltraSPARCs. In this case, Port0 does not assert a request after its current one.

Figure 7-13 Arbitration: Change Of Ownership

Figure 7-14 shows the timing when the ownership changes between two

UltraSPARCs. In this case, Port0 drives its first request and keeps Req<0> assert-

ed, attempting to drive back-to-back requests. The presence of Req<1> forces an

arbitration cycle, however, and Port1 becomes CURRENT DRIVER as a result.

Figure 7-14 Arbitration: CURRENT DRIVER Loses Ownership While Asserting Request

Figure 7-15 on page 91 shows the timing when the SC takes ownership after an

UltraSPARC has driven a request packet. Since Port0 is the receiver of the request,

SC drives Addr_Valid<0> during the first cycle of its request.

0 0 0 1 1LAST PORT DRIVER

Req<0>

Req<1>

SYSADDR

Addr_Valid<0>

Addr_Valid<1>

Cycle 0 Cycle 1 Cycle 0 Cycle 1

0 0 0 0 1LAST PORT DRIVER

Req<0>

Req<1>

SYSADDR

Addr_Valid<0>

Addr_Valid<1>

Cycle 0 Cycle 1 Cycle 0
Sun Microelectronics
90

7. UltraSPARC External Interfaces
Figure 7-15 Arbitration: SC Arbitrates and Sends a Packet to Port0

Figure 7-16 shows the timing when the SC relinquishes ownership after is has

driven a request packet. Port0 asserts its request and is allowed to drive its pack-

et(s) after one dead cycle.

Figure 7-16 Arbitration: SC Gives Up Ownership to Port0

In Figure 7-17, Port1 encounters a quiescent bus when asserts its request. It is al-

lowed to drive its packet(s) after one arbitration cycle.

Figure 7-17 Arbitration: Bus Quiescent—Port1 Becomes CURRENT DRIVER

0 0 0 0 0

SC drivesSYSADDR &

Addr_Valid<0>
Undriven

Addr_Valid<0> SYSADDR &

Port0 drives

LAST PORT DRIVER

Req<0>

SC Request

SYSADDR

Addr_Valid<0>

Addr_Valid<0>

Cycle 0 Cycle 1 Cycle 0 Cycle 1

0 0 0 0 0

Port0 owner
DrivesDrives

SC owner,

LAST PORT DRIVER

Req<0>

SC Request

SYSADDR

Addr_Valid<0>

Addr_Valid<0>Addr_Valid<0>

Cycle 0 Cycle 1 Cycle 0 Cycle 1

0 0 0 1 1

Request
Asserted

Arbitration
Occurs

First Cycle
of Packet

LAST PORT DRIVER

Req<0>

Req<1>

SYSADDR Cycle 0 Cycle 1
Sun Microelectronics
91

UltraSPARC User’s Manual
In Figure 7-18, the SC becomes CURRENT DRIVER.

Figure 7-18 Arbitration: SC Becomes CURRENT DRIVER

7.5 UltraSPARC Interconnect Transaction Overview
The are four interconnect transaction categories:

1. P_REQ transaction request from UltraSPARC to the system on the

SYSADDR bus. These transactions initiate activity on the interconnect.

P_REQ transactions are further subdivided into coherent requests for

cacheable memory accesses, noncacheable P_REQ transactions, and

interrupt vector accesses. Coherent read/write requests transfer 64-byte

blocks, which corresponds to the E-Cache block size. Partial stores are

supported to noncacheable locations only. The interconnect does not

support read-modify-write requests, so atomic loads and stores can be

performed only to cacheable memory.

UltraSPARC splits P_REQ transactions into two independent classes:

• Class 0 contains read transactions due to cacheable misses and block

loads

• Class 1 contains Writeback requests, WriteInvalidate requests, block

stores, interrupt requests, noncached read requests (other than block

loads), and noncached write requests.

SC must strongly order transactions from each processor within each Class.

2. S_REQ transaction request from the system to the processor on the

SYSADDR bus; it is either a copyback/invalidate in response to some

coherent P_REQ or a slave read of the processor ID register.

3. P_REPLY acknowledgment generated by the processor to the system on

point-to-point unidirectional wires. It is generated in response to a

previous S_REQ transaction from the system.

0 0 0 0 0LAST PORT DRIVER

Req<0>

SC Request

SYSADDR

Request
Asserted

Arbitration
Occurs

First Cycle
of Packet

Cycle 1 Cycle 2
Sun Microelectronics
92

7. UltraSPARC External Interfaces
4. S_REPLY acknowledgment is generated by the system to the processor on

point-to-point unidirectional wires, which initiates transfer of data. It is

generated in response to a P_REQ or P_REPLY from that processor.

Any UltraSPARC event (such as a load or store miss) that causes an interconnect

transaction completes before any snoop activity can result in the invalidation or

copyback of that line. This is a necessary condition to avoid livelock, which may

otherwise arise if a line is shuttling back and forth among multiple requesters

and no requester is able to make any incremental progress.

7.5.1 Cache Line and Writeback Buffer Ownership Windows

It is important to understand the relationship between S_REPLYs and S_REQ /

P_REPLY combinations for transferring ownership of a line.

UltraSPARC is the owner of a line starting the cycle after it receives an S_REPLY

for that line.

The SC must not issue an S_REPLY for a request with the same cache index (that

is, for each coherent read or Writeback) during the window between an S_REQ

and P_REPLY for that same index. This presents a race condition with indetermi-

nate results. Figure 7-19 shows the window during which SC must not issue an

S_REPLY. (The figure shows that the P_REQ can come either before or after the

S_REQ.) In this case, SC must not reply to P_REQ until the UltraSPARC has re-

plied to S_REQ.

Figure 7-19 S_REQ / P_REPLY Window

In addition, when the No Dual Tag Present (NDP) option is being used to allow

S_REQs to interrogate the UltraSPARC for the presence of a line, if an S_REQ to

the same index as an outstanding miss arrives before both the read and the Write-

back are completed:

1. If UltraSPARC receives the S_REQ for a clean cache block after the S_RBU/

S_RBS reply for the victimizing read transaction at the same cache index, it

returns P_SNACK.

S_REQ

P_REQ
P_REPLY

S_REPLY

Window
Sun Microelectronics
93

UltraSPARC User’s Manual
2. If UltraSPARC receives the S_REQ for the dirty cache block in the

Writeback Buffer after the S_WAB/S_WBCAN reply for the Writeback

transaction and before the S_RBU/S_RBS reply for the read transaction, the

S_REQ completes atomically and can either result in P_SACK or

P_SNACK. Both P_REPLYs are correct, since the former ends up sourcing

the same data that was just written to memory.

If an S_REQ receives a P_SNACK, SC can send an S_CRAB, but UltraSPARC re-

turns undefined data. There is no reason for SC to send an S_CRAB in this case.

7.6 Cache Coherence Protocol

This section describes the protocol used to maintain coherency between an

UltraSPARC’s internal caches, the E-Cache, and the system. “System” refers to

any other location within the same coherency domain as UltraSPARC; for exam-

ple, it includes caches of other processors connected to the interconnect. The

cache coherence protocol operates on Physically Indexed, Physically Tagged

(PIPT) writeback caches.

The E-Cache maintains inclusion for both the I-Cache and the D-Cache; that is, all

lines in the internal caches are also in the E-Cache. The system is responsible only

for maintaining E-Cache coherency; UltraSPARC ensures that the internal caches

are coherent.

The cache coherence protocol is point-to-point write-invalidate; that is, SC must

issue separate S_INV requests to each cache containing a copy of the line it needs

to invalidate. There are no “broadcast” transmissions on the interconnect.

The protocol is based on the MOESI states maintained in the E-Cache tags of each

master port. Note that subsets of the states, such as MSI, or MOSI, could be used.

Bits within each E-Cache tag define the cache line state of each line:

Table 7-7 E-Cache Coherency State Definition

State Bit

Line State Valid Modified Exclusive

Invalid (I) 0 X X

Shared Clean (S) 1 0 0

Exclusive Clean (E) 1 0 1

Shared Modified (O) 1 1 0

Exclusive Modified (M) 1 1 1
Sun Microelectronics
94

7. UltraSPARC External Interfaces
7.6.1 State Transitions

Figure 7-20 on page 95 shows the cache coherency state diagram. Table 7-9 on

page 97 describes these transitions. It also shows the transactions that are initiat-

ed by either UltraSPARC or the SC, along with the expected acknowledgment fol-

lowing each transaction.

Figure 7-20 Cache Coherence Protocol State Diagram

Note: These are not necessarily the transitions seen by a cache line at index [i];
rather, they are the transitions for a data block that is moving to/from a cache

line. The Invalid state in this context means that the block is not present in this

cache, but it may be present in another cache.

The following are invariants for the state transitions:

1. Only one cache in the system can ever have the line in E or M state; while

a line is in E or M state, no other cache can have a copy of that line.

2. Only one cache in the system can ever have the line in the O state; any

other cache having that line must have it in the S state.

3. For ReadToOwn transactions, when data transfer is needed, the line should

be sourced from a cache that has the line in the M or O state. The line is

sourced from the addressed location in memory only if no cache has it.

4. With a P_WRB_REQ transaction, a cache line is written to the destination

address only if its state is M or O. The Writeback is cancelled if its state is I.

5. With a P_WRI_REQ transaction, data is written to memory regardless of its

state.

M

E

S I O
Sun Microelectronics
95

UltraSPARC User’s Manual
6. SC should cancel a P_WRB_REQ transaction when a P_RDO_REQ

(S_CPI_REQ to UltraSPARC) or P_WRI_REQ (S_INV_REQ to UltraSPARC)

from any other UltraSPARC invalidates the Writeback line.

7. UltraSPARC will not issue a read request for a line that is already in its

cache (this includes P_RDD_REQ).

Figure 7-20 on page 95 shows that some transitions are caused by the

PREFETCH{A} instructions, which are not supported by all UltraSPARC models.

Table 7-8 shows which UltraSPARC models support the PREFETCH{A} instruc-

tions.

Table 7-8 PREFETCH{A} Instruction Support

UltraSPARC-I UltraSPARC-II

PREFETCH{A} ✓
Sun Microelectronics
96

7. UltraSPARC External Interfaces
Table 7-9 Transitions Allowed for Cache Coherence Protocol

Transition Description
Transaction Req

to/from Port
Acknowledgment

I → E Load miss; data coming from memory to an invalid

line (no other cache has the data).

P_RDS_REQ S_RBU

I → S Load miss; data provided by another cache or memory

to an invalid line (another cache has the data)

I-Cache miss or PREFETCH.

P_RDS_REQ

P_RDSA_REQ

S_RBS

S_RBS

I → M Store miss, atomic miss on invalid line, PREFETCH. P_RDO_REQ S_RBU

E → M Store hit or atomic hit to Exclusive Clean line. No Transaction No Transaction
E → S Request from system to share this line (load miss from

another processor).

S_CPB_REQ,

S_CPB_MSI_REQ

P_SACK | P_SACKD

followed by S_CRAB

E → I i) A clean line is victimized by the processor.

I-Cache miss.

Write miss.

P_RDS_REQ

or
P_RDSA_REQ

or
P_RDO_REQ

S_RBU or S_RBS

S_RBS

S_RBU

ii) Request from system to copyback and invalidate

this line (store miss from another processor).

S_CPI_REQ P_SACK|P_SACKD

followed by S_CRAB

iii) Request from SC to invalidate this line (block store

from another processor)

S_INV_REQ P_SACK|P_SACKD

S → M Store hit, atomic hit to Shared Clean line, PREFETCH. P_RDO_REQ S_OAK

S → I i) A Shared Clean line is victimized by UltraSPARC.

I-Cache miss.

Write hit on shared line.

P_RDS_REQ

or
P_RDSA_REQ

or
P_RDO_REQ

S_RBU or S_RBS

S_RBS

S_RBU

ii) Another processor wants to write this shared line. S_INV_REQ

or
S_CPI_REQ

P_SACK|P_SACKD

P_SACK|P_SACKD

followed by S_CRAB

iii) Request from SC to invalidate this line (block store

from another processor).

S_INV_REQ P_SACK|P_SACKD

M → O Request from another processor to read a modified

line, memory is not updated (as opposed to M → S).

S_CPB_REQ P_SACK|P_SACKD

followed by S_CRAB

M, O → I

i) A Modified line is victimized by the processor

(Writeback).

P_WRB_REQ S_WAB or S_WBCAN

if system takes ownership
before completing Writeback

ii) Request from system to copyback and invalidate

this line (store miss from another processor).

S_CPI_REQ P_SACK|P_SACKD

followed by S_CRAB

iii) Request from system to invalidate this line (block

store from another processor)

S_INV_REQ P_SACK|P_SACKD

M, O → S Request from another processor to read this line, mem-

ory is updated so line becomes clean (c.f. M → O)

S_CPB_MSI_REQ P_SACK|P_SACKD

followed by S_CRAB

O → M Store hit, atomic hit to Modified line, PREFETCH. P_RDO_REQ S_OAK
Sun Microelectronics
97

UltraSPARC User’s Manual
7.6.2 Cache Coherence Model

UltraSPARC supports a variety of cache coherent system implementations.

UltraSPARC can be used in a system that keeps a non-uniform copy of the

E-Cache tags. Non-uniform means that it does not maintain all five of the MOESI

states. It is possible to build a set of duplicate tags (Dtags) with 2, 3, or 4 states,

with various mappings of the MOESI states onto the reduced states. There can be

performance or implementation advantages specific to a system depending on

the Dtag description.

It is possible to build a simpler system without Dtags. In systems of this type, any

cache-coherent activity from another memory user must first interrogate

UltraSPARC to see if the memory line is in use. If the line is in use, the

UltraSPARC is asked to change the line’s MOESI state.

In systems with or without Dtags, the goal is to implement a write-invalidate

cache coherency protocol.

Because UltraSPARC allows coherent read misses and Writebacks to complete in-

dependently, a typical external controller, (SC or system controller) must main-

tain some transient state during the window defined by the outstanding read and

Writeback. It is possible, however, to avoid maintaining this state by making the

read with Writeback complete atomically; this is described later.

Figure 7-21 illustrates a system that uses Dtags to maintain cache coherence; the

system contains multiple UltraSPARCs, one Dtag cache for each processor, a Sys-

tem Controller, and one Dtag Transient Buffer (DtagTB) within the SC for each

Dtag cache. The drawing also shows the Etag and Writeback buffer within each

UltraSPARC.

Each DtagTB contains the same number of entries as the number of Writeback

buffer entries in each UltraSPARC, which is model dependent. The DtagTB acts

as the n+mth Dtag entry, where n is the number of Etag entries and m is the num-

ber of Writeback buffer entries. The DtagTB temporarily holds the Dtag state for

either the new line or the victim (Writeback) line when a cache miss displaces a

dirty block from the E-Cache. Conceptually, it is easier to design an SC that keeps

the victim address in the DtagTB, but it may be difficult to get the tag from the

Dual tags, depending on the specific implementation.

The SC must manage the transient buffer carefully. Since DtagTB contains lines

that may need to return data in response to coherent reads, SC must interrogate it

whenever it would interrogate the Dtags. Alternatively, the SC could block other

coherent activity to that index until both the read and Writeback complete, so the

transient state is never visible to another coherent transaction.
Sun Microelectronics
98

7. UltraSPARC External Interfaces
Figure 7-21 Cache Coherence Model Using Centralized Duplicate Tags (Dtags)

In the example shown in Figure 7-21, two UltraSPARCs cache the same data

block A. UltraSPARC1 has block A in the O state; UltraSPARCk has block A in the

S state. UltraSPARC1 victimizes block A for a new data block B, and transfers the

dirty block A to the writeback buffer for writing to memory. SC places the Dtag

state for block B in DtagTB, marks the buffer valid, and waits for the Writeback

transaction. If UltraSPARCk were also to victimize block A for block B, then block

B will simply overwrite block A in the Etags and the Dtags for UltraSPARCk. In

this case, the writeback buffer and DtagTB would not be used for this transaction,

since the line victim is clean.

7.6.3 Cache Coherence Sequence in Systems with Dtags

An example sequence of events:

1. UltraSPARC asserts its Req<n> signal to indicate that it wants to arbitrate

for the address bus. It eventually wins the arbitration and drives a request

packet on SYSADDR.

M–1

0

N

. . .WB Buffer

A

A

B

System Controller

DtagTB kDtagTB 1

0
Etag 1

Main Memory

Valid B

N–1

B

WB Buffer

X
0

Etag k

N–1

A

N Invalid

0
Dtag 1

N–1

A . . .
0

Dtag k

N–1

A

UltraSPARC1 UltraSPARCk
Sun Microelectronics
99

UltraSPARC User’s Manual
2. SC decodes the request packet and determines the transaction type and

physical address. If it is a coherent read or write transaction, the SC takes

the full address and interrogates the Dtags and any valid DtagTBs. If Dtag

reads can occur every cycle, there may need to be some bypassing of Dtag

updates; if a Dtag read-update pair is in progress, some blocking of new

transactions may be required.

If the address is in main memory, SC initiates the memory cycle. If the

address is not in main memory, SC can terminate coherent reads with error.

3. SC consolidates the result of the lookup from all the Dtags, and in the next

cycle determines where the data will come from for a read transaction.

If the data is to be sourced from main memory, SC continues with the

memory cycle.

If the data is to be sourced from another UltraSPARC’s cache, SC aborts the

memory cycle and sends an appropriate S_REQ to each UltraSPARC

containing a copy of the requested line.

4. SC waits for a P_REPLY from each UltraSPARC to which it sent an S_REQ

before S_REPLYing to the original requesting UltraSPARC. In general, the

SC does not complete the original transaction until all of the related

S_REQs are P_REPLYed. Implementations may overlap some of these

operations, but must be careful to meet the requirements of the SPARC-V9

memory model in this case.

5. When the data is ready to be transferred to the requesting UltraSPARC, SC

sends the acknowledgment S_REPLY to the requestor, then the data is

transferred from a sourcing cache, or from main memory.

6. If the original request was a Writeback, the lookup and update are only

necessary on the Dtag and DtagTB of the requesting UltraSPARC;

depending on the results of this lookup, SC generates an S_REPLY to it

either drive the data (S_WAB) or cancel the Writeback (S_WBCAN).

7. For a write-invalidate request, the lookup and update are performed in the

same manner as for coherent read requests. SC sends an invalidation

S_REQ to all UltraSPARCs that have a lookup match. The SC defers the

S_REPLY to the requesting UltraSPARC for driving the data until it

receives all of the P_REPLYs for invalidations. Again, this behavior is

implementation-specific.
Sun Microelectronics
100

7. UltraSPARC External Interfaces
7.6.4 Cache Coherence Sequence in Systems without Dtags

The following is an example sequence of events for the coherence model shown

in Figure 7-21 on page 99, except that there are no duplicate tags. Typically, this is

a system with a single UltraSPARC and a cache-coherent I/O interface. In this

case, I/O transfers should not be completed to memory until the SC has issued

an S_REQ to snoop the UltraSPARC for the DMA address and it has received the

corresponding P_REPLY.

Every I/O read incurs a copyback S_REQ to UltraSPARC and every I/O 64-byte

write incurs an invalidate S_REQ. SC should wait for a P_REPLY acknowledg-

ment from UltraSPARC for each DMA transaction before reading or writing

memory.

The data is sourced either from the E-Cache (if the P_REPLY was P_SACK or

P_SACKD) or from main memory (if the P_REPLY was P_SNACK).

For I/O 64-byte writes, SC writes data to memory after it receives the invalida-

tion acknowledgment from UltraSPARC.

1. P_SACKD informs SC that UltraSPARC was initiating or had an

outstanding P_WRB_REQ to the same address<40:6>. Since some other

writer has ownership, this Writeback should not complete to memory,

because the other writer’s modifications may be overwritten.

2. In systems without Dtags, SC must remember the P_REPLY type from

UltraSPARC if it previously sent an invalidation (S_INV_REQ or

S_CPI_REQ) request (due to P_WRI_REQ from UltraSPARC or DMA, or

P_RDO_REQ from DMA for read-modify-write). If the reply was

P_SACKD, SC must cancel the subsequent Writeback transaction

(P_WRB_REQ) from UltraSPARC.

3. Upon receiving a P_SACKD reply for S_INV_REQ or S_CPI_REQ, the SC

should treat any subsequent P_SACKD as a P_SNACK until it issues

S_WBCAN to cancel the Writeback. Note that UltraSPARC may issue this

P_SACKD before the P_WRB_REQ becomes visible to the system.

4. The SC sets NDP (No Dtag Present) in the S_REQ request packet. This

instructs UltraSPARC to generate a P_SNACK reply in response to

S_CPB_REQ, S_CPI_REQ, and S_CPD_REQ requests if it does not have the

requested block.

5. If UltraSPARC sets the IVA (Invalidate Advisory) bit in a P_WRI_REQ

transaction, SC sends an explicit S_INV_REQ request to the UltraSPARC.
Sun Microelectronics
101

UltraSPARC User’s Manual
7.7 Cache Coherent Transactions

This section specifies the cache coherent transactions (that is, transactions issued

to access cacheable main memory address space), and the final Etag cache state of

the requesting interconnect master after the transaction completes.

7.7.1 ReadToShare (P_RDS_REQ)

Coherent Read to share. Generated by UltraSPARC due to a load miss.

The system provides the data to the UltraSPARC with S_RBS (Read Block

Shared) reply if another cache also shares it, and S_RBU (Read Block Unshared)

reply if no other cache has it.

If this read transaction displaces a dirty victim block in the cache (Etag state is M

or O), UltraSPARC sets the Dirty Victim Pending (DVP) bit in the request packet.

If no other cache has this datum (that is, if this is the first read of the datum), then

Etag transitions to E. This gives exclusive access to the requesting UltraSPARC to

later write this datum without generating another interconnect transaction.

If SC determines that another cache also has this datum, Etag transitions to S.

Table 7-10 shows the number of outstanding ReadToShare transactions that each

UltraSPARC model supports.

7.7.1.1 Error Handling

The system can reply with S_RTO (time-out, typically if the address is for unim-

plemented memory), or S_ERR (bus error, typically if the access is illegal). These

in turn generate data access or instruction access error exceptions as described in

Chapter 11, “Error Handling.”

7.7.2 ReadToShareAlways (P_RDSA_REQ)

Coherent Read to share always. Generated by a UltraSPARC for an I-Cache miss.

Table 7-10 Supported Number of Outstanding ReadToShare Transactions

UltraSPARC-I UltraSPARC-II

Number 1 3
Sun Microelectronics
102

7. UltraSPARC External Interfaces
This is the same as the ReadToShare transaction, except that the Etag of the re-

questing UltraSPARC always transitions to S, and the system provides the data

with S_RBS reply. ReadToShareAlways avoids the overhead of taking read only

lines from E to S state when sharing eventually occurs.

If this transaction displaces a dirty victim block in the cache (Etag state is M or

O), UltraSPARC sets the Dirty Victim Pending (DVP) bit in the request packet.

UltraSPARC supports only one outstanding ReadToShareAlways transaction.

7.7.2.1 Error Handling

The system can reply with S_RTO (time-out, typically if the address is for unim-

plemented memory), or S_ERR (bus error, typically if the access is illegal). These

in turn generate data access or instruction access error exceptions as described in

Chapter 11, “Error Handling.”

7.7.3 ReadToOwn (P_RDO_REQ)

Coherent Read to Own. Generated by UltraSPARC for a store miss or atomic

miss, or for a store hit or atomic hit on a shared line.

Etag transitions to M.

For a store miss or atomic miss, SC gets data from memory or another processor

and provides it to UltraSPARC with the S_RBU reply, after SC receives P_SACK

or P_SACKD reply from all other interconnect ports sharing this block.

If UltraSPARC already has the block in the S or O state and wants exclusive own-

ership in order to write the block (store hit or atomic hit), no data is transferred

and SC replies with S_OAK (Exclusive Ownership Ack) after receiving P_SACK

or P_SACKD from all other interconnect ports sharing this block. It is legal to

transfer data to the processor even in this case. In systems without Dtags, this

must be done.

If this read transaction displaces a dirty victim block in the cache (Etag state is M

or O), UltraSPARC sets the Dirty Victim Pending (DVP) bit in the request packet.

Table 7-11 shows the number of outstanding ReadToOwn transactions that each

UltraSPARC model supports.

Table 7-11 Supported Number of Outstanding ReadToOwn Transactions

UltraSPARC-I UltraSPARC-II

Number 1 3
Sun Microelectronics
103

UltraSPARC User’s Manual
7.7.3.1 Error Handling

The system can reply with S_RTO (time-out, typically if the address is for unim-

plemented memory), or S_ERR (bus error, typically if the access is illegal). These

in turn generate data access or instruction access error exceptions as described in

Chapter 11, “Error Handling.”

7.7.4 ReadToDiscard (P_RDD_REQ)

Coherent Read with intent to discard after first use. Generated by UltraSPARC for

a block load miss.

No state change in Etag in the system. This is a nondestructive read from an own-

ing cache (in M | O state), or from main memory. SC provides the data to

UltraSPARC with the S_RBS reply. The DVP bit is undefined for this transaction.

Table 7-12 shows the number of outstanding ReadToDiscard transactions that

each UltraSPARC model supports.

7.7.4.1 Error Handling

The system can reply with S_RTO (time-out, typically if the address is for unim-

plemented memory), or S_ERR (bus error, typically if the access is illegal). These

in turn generate data access or instruction access error exceptions as described in

Chapter 11, “Error Handling.”

7.7.5 Writeback (P_WRB_REQ)

Writeback Request. Generated by UltraSPARC to write back a dirty victimized

block to memory. The Writeback is always associated with a preceding coherent

victimizing read transaction (with the DVP bit set) on the same cache line.

The Etag transitions to a new state based on the associated victimizing read

transaction; that is, to E state if no other processor has the data, to S state if an-

other processor shares the data, or to I state if the read fails.

Table 7-12 Supported Number of Outstanding ReadToDiscard Transactions

UltraSPARC-I UltraSPARC-II

Number 1 2
Sun Microelectronics
104

7. UltraSPARC External Interfaces
If the Writeback is to be cancelled because of an intervening invalidation

(S_CPI_REQ or S_INV_REQ) for the victimized datum (due to a P_RDO_REQ or

P_WRI_REQ from another UltraSPARC), SC cancels the Writeback with

S_WBCAN and no data is written.

If the Writeback is not cancelled, SC issues S_WAB and UltraSPARC drives the

64-byte block of data aligned on a 64-byte boundary (A<5:4>=0) onto SYSDATA.

See Section 7.11, “Writeback Issues,” for more information about Writeback.

7.7.5.1 Error Handling

Since UltraSPARC always pairs a Writeback and a read with DVP set, the Write-

back is issued even if the read terminates with error. It is illegal for SC to respond

to Writeback with S_RTO or S_ERR; that is, the Writeback transaction always

completes with S_WAB or S_WBCAN. SC uses interrupts to report write failures.

7.7.6 WriteInvalidate (P_WRI_REQ)

Coherent Write and Invalidate request. Generated by UltraSPARC for a block

store to an S, O, or I state line or a block store commit to a line in any state. This

transaction is used to inject new data directly into the coherence domain; there is

no victim read transaction associated with this request.

The P_WRI_REQ packet contains an Invalidate me Advisory (IVA) bit, which

specifies whether SC must send an S_INV_REQ back to the requesting processor.

The IVA bit is ignored in systems that support Dtags.

After all invalidations have been acknowledged, SC issues S_WAB to the master

UltraSPARC to drive the 64-byte block of data aligned on a 64-byte boundary

(A<5:4>=0) onto SYSDATA.

UltraSPARC can issue up to two outstanding WriteInvalidate transactions.

7.7.6.1 Error Handling

It is illegal for SC to respond to a WriteInvalidate request with S_RTO or S_ERR.

SC reports write errors with interrupts.
Sun Microelectronics
105

UltraSPARC User’s Manual
7.7.7 Invalidate (S_INV_REQ)

Invalidate request from SC to UltraSPARC. SC generates S_INV_REQs to service

a ReadToOwn (P_RDO_REQ) or WriteInvalidate (P_WRI_REQ) request from an-

other processor.

Etag transitions to I.

UltraSPARC issues its P_REPLY depending on the state of the E-Cache line and

the setting of the No Dual tag Present (NDP) bit in the S_INV_REQ.

If NDP=0, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache. UltraSPARC also asserts P_SACK if the

block is not in the cache, but this is an error condition in systems that support

Dtags (NDP=0).

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back.

If NDP=1, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache.

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back.

• P_SNACK if the block is not present in the E-Cache or the writeback buffer.

UltraSPARC responds more quickly if NDP=0; SC should assert NDP only in sys-

tems that do not support Dtags. Section 7.10, “S_REQ,” on page 111 for more tim-

ing information.

SC can buffer the P_SACKD reply and cancel the P_WRB_REQ when it appears.

UltraSPARC supports one outstanding coherent system request. SC can send its

next coherent request on the second cycle after the P_SACK{D} reply.

7.7.8 Copyback (S_CPB_REQ)

Copyback request from SC to UltraSPARC. SC generates S_CPB_REQ to service a

ReadToShare (P_RDS_REQ) or ReadToShareAlways (P_RDSA_REQ) request from

another processor.

The Etag final state is O or S.

UltraSPARC issues its P_REPLY depending on the state of the E-Cache line and

the setting of the No Dual tag Present (NDP) bit in the S_CPB_REQ.
Sun Microelectronics
106

7. UltraSPARC External Interfaces
If NDP=0, UltraSPARC replies with:

• P_SACK or P_SACKD if the block is in the E-Cache or has been victimized

from the E-Cache but not yet written back Note that UltraSPARC can reply

with P_SACK even if the block has been victimized from the E-Cache.

UltraSPARC also asserts P_SACK if the block is not in the cache, but this is an

error condition in systems that support Dtags (NDP=0).

If NDP=1, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache.

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back.

• P_SNACK if the block is not present in the E-Cache or the writeback buffer.

The P_SACK or P_SACKD reply indicates that UltraSPARC is ready to transfer

the requested data. SC initiates the data transfer by sending S_CRAB. If NDP=0

and the block was not present in the cache, UltraSPARC drives undefined data in

response to the S_CRAB.

UltraSPARC responds more quickly if NDP=0; SC should assert NDP only in sys-

tems that do not support Dtags. Section 7.10, “S_REQ,” on page 111 for more tim-

ing information.

UltraSPARC supports one outstanding coherent system request. SC can send its

next coherent request on the cycle after the S_CRAB reply.

7.7.9 CopybackInvalidate (S_CPI_REQ)

Copyback and Invalidate request from SC to UltraSPARC. SC generates

S_CPI_REQ to service a ReadToOwn (P_RDO_REQ) request from another proces-

sor.

The Etag transitions to I.

UltraSPARC issues its P_REPLY depending on the state of the E-Cache line and

the setting of the No Dual tag Present (NDP) bit in the S_CPI_REQ.

If NDP=0, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache. UltraSPARC also asserts P_SACK if the

block is not in the cache, but this is an error condition in systems that support

Dtags (NDP=0).

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back
Sun Microelectronics
107

UltraSPARC User’s Manual
If NDP=1, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache.

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back.

• P_SNACK if the block is not present in the E-Cache or the writeback buffer.

The P_SACK or P_SACKD reply indicates that UltraSPARC is ready to transfer

the requested data. SC initiates the data transfer by sending S_CRAB. If NDP=0

and the block was not present in the cache, UltraSPARC drives undefined data in

response to the S_CRAB.

UltraSPARC responds more quickly if NDP=0; SC should assert NDP only in sys-

tems that do not support Dtags. Section 7.10, “S_REQ,” on page 111 for more tim-

ing information.

SC can buffer the P_SACKD reply and cancel the P_WRB_REQ when it appears.

UltraSPARC-I supports one outstanding coherent system request. SC can send its

next coherent request on the cycle after the S_CRAB reply.

7.7.10 CopybackToDiscard (S_CPD_REQ)

Non-destructive copyback request from SC to UltraSPARC. Generated by SC to

service a ReadToDiscard (P_RDD_REQ) request from another processor. This

transaction does not generate a state change for the E-Cache line.

No state change in Etag.

UltraSPARC issues its P_REPLY depending on the state of the E-Cache line and

the setting of the No Dual tag Present (NDP) bit in the S_CPI_REQ.

If NDP=0, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache. UltraSPARC also asserts P_SACK if the

block is not in the cache, but this is an error condition in systems that support

Dtags (NDP=0).

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back

If NDP=1, UltraSPARC replies with:

• P_SACK if the block is in the E-Cache.

• P_SACKD if the block has been victimized from the E-Cache but not yet

written back.
Sun Microelectronics
108

7. UltraSPARC External Interfaces
• P_SNACK if the block is not present in the E-Cache or the writeback buffer.

The P_SACK or P_SACKD reply indicates that UltraSPARC is ready to transfer

the requested data. SC initiates the data transfer by sending S_CRAB. If NDP=0

and the block was not present in the cache, UltraSPARC drives undefined data in

response to the S_CRAB.

UltraSPARC responds more quickly if NDP=0; SC should assert NDP only in sys-

tems that do not support Dtags. Section 7.10, “S_REQ,” on page 111 for more tim-

ing information.

UltraSPARC supports one outstanding coherent system request. SC can send its

next coherent request on the cycle after the S_CRAB reply.

7.8 Non-Cached Data Transactions
This section specifies the non-cached data transactions; that is, transactions is-

sued while the MMU is disabled or to non-physical cacheable pages. UltraSPARC

does not cache data associated with these transactions.

7.8.1 NonCachedRead (P_NCRD_REQ)

Noncached Read. Generated by an UltraSPARC by a load or instruction fetch

from a noncached address space, or by SC to read an UltraSPARC’s port_ID reg-

ister on behalf of another processor.

This transaction reads either 1, 2, 4, 8, or 16 bytes; the byte location is specified

with a bytemask in the request packet. The address is aligned on a 16-byte

boundary. The bytemask is aligned on a natural boundary.

SC sends an S_RAS (Read ACK Single) reply, which directs the requesting

UltraSPARC to receive the data from SYSDATA.

SC can send P_NCRD_REQ to UltraSPARC in order to service an interprocessor

read request. The transaction sequence is as follows:

1. UltraSPARC1 sends P_NCRD_REQ to SC in order to read the port_ID of

UltraSPARC2

2. SC forwards the P_NCRD_REQ to UltraSPARC2

3. UltraSPARC2 responds to SC with P_RAS, indicating that it is ready to

drive the requested data

4. SC responds to UltraSPARC2 by sending S_SRS
Sun Microelectronics
109

UltraSPARC User’s Manual
5. UltraSPARC2 drives the value of its port_ID register on SYSDATA

6. SC sends S_RAS to UltraSPARC1 (the initiator)

7. UltraSPARC1 reads the port_ID of UltraSPARC2 from SYSDATA

Table 7-13 shows the number of outstanding NonCachedRead transactions that

each UltraSPARC model supports.

7.8.2 NonCachedBlockRead (P_NCBRD_REQ)

Noncached Block Read Request. UltraSPARC reads 64 bytes of noncached data

with this transaction. Generated by UltraSPARC for block read of a noncached

address space.

The data is aligned on 64-byte boundary (PA<5:4>=0). SC sends an S_RBU (Read

Block Unshared) reply, which directs the requesting UltraSPARC to receive the

data from SYSDATA.

Table 7-13 shows the number of outstanding NonCachedBlockRead transactions

that each UltraSPARC model supports.

7.8.3 NonCachedWrite (P_NCWR_REQ)

Noncached Write. Generated by UltraSPARC to write a noncached address space.

The address is aligned on 16-byte boundary. Any number between 0..16 bytes can

be written, as specified by a 16-bit bytemask in the request. Typically, the data is

written to slave devices that support writes with arbitrary byte masks (mainly

graphics devices). A bytemask of all zeros indicates a no-op at the slave.

SC issues S_WAS to the requesting UltraSPARC to drive the data on SYSDATA.

Table 7-13 Supported Number of Outstanding NonCachedRead Transactions

UltraSPARC-I UltraSPARC-II

Number 1 1

Table 7-14 Supported Number of Outstanding NonCachedBlockRead Transactions

UltraSPARC-I UltraSPARC-II

Number 1 2
Sun Microelectronics
110

7. UltraSPARC External Interfaces
7.8.4 NonCachedBlockWrite (P_NCBWR_REQ)

Noncached Block Write Request. UltraSPARC writes 64 bytes of noncached data.

Generated by UltraSPARC for block store to a noncached address space.

The data is aligned on 64-byte boundary (PA<5:4>=0).

SC issues S_WAB to the requesting UltraSPARC to drive the data on SYSDATA.

7.9 S_RTO/S_ERR

UltraSPARC changes the E-Cache tag to I state whenever a P_RD*_REQ for that

lines receives S_RTO or S_ERR reply.

When UltraSPARC issues a P_REQ for ownership of a line in S or O state, of the

reply is S_RTO or S_ERR, the state of the line is not changed (tag or data) and the

store is not completed.

7.10 S_REQ

UltraSPARC-I can support at most one outstanding S_REQ transaction for copy-

back/invalidate from SC. SC must block subsequent S_REQs to the same

UltraSPARC-I, even when the requests are from different UltraSPARCs and for

data at different addresses.

UltraSPARC-I also imposes the following restrictions on back-to-back S_REQs:

• If the previous S_REQ requires a data transfer, the earliest that SC can send

the next S_REQ (both S_INV_REQ and S_CP*_REQ) is in the clock cycle

following the S_REPLY that transfers the data.

• If the previous S_REQ does not require a data transfer (both S_INV_REQ and

P_SNACK reply to a preceding S_CP*_REQ), the earliest that SC can send the

next S_REQ (both S_INV_REQ and S_CP*_REQ) is in the clock cycle following

the P_REPLY for the previous S_REQ.

UltraSPARC is allowed to issue unrelated transactions before it provides the

P_REPLY to an outstanding S_REQ. In this case, however, SC is not required to

make SYSADDR available or to complete any of these unrelated transactions un-

til UltraSPARC issues its P_REPLY for the outstanding S_REQ.

If NDP=0, there are a minimum of 2 system cycles between an S_REQ packet and

a P_REPLY. If NDP=1, the minimum increases to 5 system cycles. The maximum

depends on what the processor is doing with the E-Cache, and it is model depen-
Sun Microelectronics
111

UltraSPARC User’s Manual
dent; Table 7-15 shows the approximate values for different UltraSPARC models.

The worst case delay occurs when E-Cache fill(s), Writeback(s), and block store(s)

must first compete.

An S_REQ operates on the E-Cache atomically with respect to other cache events.

Invalidates do not necessarily propagate to the D-Cache until software completes

a store and a MEMBAR #StoreLoad . UltraSPARC’s internal behavior should not

matter to the system designer, as long as the application uses the appropriate

SPARC memory model. See The SPARC Architecture Manual, Version 9 for informa-

tion about memory models.

In systems without Dtags, SC sets NDP=1 in all S_REQs. In this case, UltraSPARC

must search its tag store to determine if the requested line is present. If not,

UltraSPARC replies with P_SNACK.

In systems with Dtags, SC sets NDP=0 in all S_REQs. This allows UltraSPARC to

reply (P_SACK{D}) without searching its tag store, which is a significant optimi-

zation.

All other effects are the same with both values of NDP.

7.11 Writeback Issues

UltraSPARC sets the Dirty Victim Pending (DVP) bit in a coherent read transac-

tion packet if the associated E-Cache miss victimized a dirty line. SC uses the

DVP bit to manage the Dtag state for the missed block.

Each Writeback transaction is always paired one-to-one with a read transaction

with the DVP bit set. Pairing means that UltraSPARC always generates both a

read and a Writeback for the same cache index. UltraSPARC always issues the

read transaction before the Writeback transaction, but the transactions can com-

plete in any order.

Table 7-15 Worst-Case Delay Between S_REQ and P_REPLY when NDP=1

UltraSPARC Model Cycles

UltraSPARC-I ~30

UltraSPARC-II ~50–60
Sun Microelectronics
112

7. UltraSPARC External Interfaces
Table 7-16 shows the number of outstanding Writeback transactions that each

UltraSPARC model supports.

UltraSPARC-I issues only one Writeback transaction at a time. The Writeback and

its associated read transaction (with DVP=1) both must complete (receive their

respective S_REPLYs) before UltraSPARC-I issues a second read with DVP=1.

UltraSPARC-I can issue a subsequent read transaction with DVP=0 while there is

a previous Writeback pending.

UltraSPARC-I waits until it receives the acknowledgment (S_WAB or S_WBCAN)

for a Writeback transaction before it issues a coherent request for the previously

victimized block.

UltraSPARC-II can issue up to two Writeback transactions at a time; each of these

Writebacks can have an associated read with DVP=1. When two Writebacks are

outstanding, one must receive its S_REPLY before UltraSPARC-II issues a third

read with DVP=1.

UltraSPARC delays issue of a coherent read to any address that has an outstand-

ing Writeback.

UltraSPARC inhibits its own (internal) access to a victimized line (clean or dirty).

UltraSPARC keeps the victimized line in the coherence domain (and responds to

S_REQs for the line) until it receives the S_REPLY for either:

• The cache fill if the line was clean, or

• The Writeback if the line was dirty.

If UltraSPARC receives an invalidate request (S_INV_REQ or S_CPI_REQ) for a

dirty victim block with a pending Writeback, it does not cancel its Writeback.

When UltraSPARC issues the P_WRB_REQ, SC uses either S_WBCAN or S_WAB

to complete the Writeback, but it does not update memory.

SC can maintain the pending Writeback cancellation state in the Dtags; in systems

without Dtags, SC can use some other implementation-specific means.

Table 7-16 Supported Number of Outstanding Writeback Transactions

UltraSPARC-I UltraSPARC-II

Number 1 2
Sun Microelectronics
113

UltraSPARC User’s Manual
7.11.1 Clean Victim Handling

When the victimized line is clean (E, S, or I state), the read request for the new

line is issued with DVP=0, and the following rules apply:

1. UltraSPARC inhibits reading and writing the victimized line by blocking

any activity to the same E-Cache index, except for loads and stores of the

first level caches. Since the D-Cache is writethrough, stores are not

considered to be in the coherence domain until they complete to the

E-Cache.

2. UltraSPARC keeps the victimized block in the coherence domain for

copyback-invalidate requests from SC until it receives the S_REPLY for the

missed line; that is, until the read completes.

7.11.2 Dirty Victim Handling

When the victimized line is dirty (M or O state), the read request for the new line

is issued with DVP=1, and the following rules apply:

1. Reads and writes by UltraSPARC to the same E-Cache index are blocked,

just like for clean victims.

2. UltraSPARC keeps the dirty victimized block in the coherence domain for

copyback-invalidate requests from SC until it receives the S_REPLYs for

both the read and Writeback transactions; that is, until both the read and the

Writeback complete.

3. Each UltraSPARC models supports a limited number of outstanding

coherent reads with DVP=1. Table 7-16 and the paragraphs that follow it

discuss these limits.

4. The dirty victimized block transitions to I State only if the associated read

fails; that is, is completed with either S_RTO or S_ERR. When the read

completes normally, the new data overwrites the dirty victimized block.

7.11.3 Writeback Cancellation Requirement

A classic problem in designing cache-coherent interfaces is handling coherency

requests to a line that has a pending Writeback. In this case, UltraSPARC correctly

returns the writeback data, even if the read miss that caused the Writeback has al-

ready completed. However, UltraSPARC does not flush the Writeback if a coher-

ency request took ownership of the line; that is, if SC sent an invalidate
Sun Microelectronics
114

7. UltraSPARC External Interfaces
transaction (S_CPI_REQ or S_INV_REQ) for the line. This is because the Write-

back request could be pending in a number of places: inside UltraSPARC, on the

address bus, or in an SC queue.

Rather than having a mechanism that looks for and flushes a Writeback in any of

these locations, UltraSPARC allows the Writeback to proceed normally. It is the

SC’s responsibility to discard the data when UltraSPARC issues the Writeback

transaction. SC can use S_WBCAN in this case, which instructs UltraSPARC not

to drive the Writeback data on SYSDATA. SC also can use S_WAB in this case, as

long as it does not write the data to memory. By the time the Writeback is issued,

the previous port that took ownership may have completed its own Writeback. In

this case, the original Writeback would overwrite the correct data in memory.

In systems that support Dtags, SC can interrogate the tag store when it sees the

Writeback to decide if it should be cancelled. If the read miss and Writeback are

allowed to complete in any order, SC may need to maintain some internal state,

since N + M lines will be valid at one time (N lines matching the E-Cache, plus M
possible writeback lines).

In systems that do not support Dtags, SC sets NDP=1 in its request packets. In

this case, UltraSPARC replies with P_SACK if the requested line is in the

E-Cache, P_SACKD if there is a pending Writeback for the line, and P_SNACK if

the line is not present. Some special cases to this are described below. The only

difference in UltraSPARC’s operation between when NDP=0 and NDP=1 is the

possible assertion of P_SNACK.

If UltraSPARC returns P_SACKD for a S_CPI_REQ or S_INV_REQ, SC is respon-

sible for cancelling the associated P_WRB_REQ when it completes. UltraSPARC

continues to reply with P_SACKD for S_REQs to the same line until both the read

and the associated Writeback have completed. This is important to remember, be-

cause ownership of the line should have been transferred to the port that caused

the S_CPI_REQ or S_INV_REQ. SC must remember that there is a pending Write-

back Cancellation and treat all subsequent P_SACKDs like P_SNACKs.

UltraSPARC-I supports only one outstanding Writeback, so it is clear which

Writeback the P_SACKD causes to be cancelled. For UltraSPARC-II, SC must

buffer the address from the S_REQ to determine which Writeback to cancel.

7.11.4 Potential Race Condition—Copyback of Victimized Block

When a block is victimized, UltraSPARC holds it in the coherence domain until

the read miss data is returned. If the victimized block is dirty, UltraSPARC also

copies the block into the writeback buffer, which is also in the coherence domain

until the Writeback completes or is cancelled. The read and Writeback transac-
Sun Microelectronics
115

UltraSPARC User’s Manual
tions proceed asynchronously and may complete in any order. As long as either
the read or the Writeback is outstanding, UltraSPARC maintains the victimized

block in the coherence domain.

While the victimized block is in the coherence domain, UltraSPARC must honor

Copyback requests for the block from SC. However, since the read and Writeback

requests might complete at any time, it is possible that SC could issue a Copy-

back request for a line that was present when the S_REQ was issued, but absent

by the time UltraSPARC attempts to return the requested block. Since P_SNACK

is not a legal reply for Copyback requests in systems with Dtags, there is no way

for UltraSPARC to tell SC about this case. Thus, it is SC’s responsibility to elimi-

nate this potential race condition before it occurs.

Whenever SC receives a P_REQ for a line that has been victimized in another pro-

cessor, it must not issue its S_REPLY to the initial request until after it sends the

S_REQ for Copyback and receives the P_REPLY from the processor holding the

victimized line. This sequence closes the window of vulnerability in the processor

holding the victimized block. See the discussion accompanying Figure 7-19 on

page 93 for more information.

7.12 Interrupts (P_INT_REQ)

UltraSPARC can both send and receive interrupt requests. Interrupt requests are

used to report interrupts from I/O devices, to report asynchronous event and er-

rors, and to post software cross-calls to other UltraSPARCs. Interrupts deliver a

64-byte block of data to the destination, but UltraSPARC uses only the low order

64-bits of each of the first three 128-bit data words. UltraSPARC cannot send an

interrupt to itself. These three 64-bit words are written into the UltraSPARC’s In-

coming Interrupt Vector Data registers.

Interrupt sends are always in Class 1. There is no ordering requirement for inter-

rupts with respect to other transactions.

The interrupt transaction packet does not contain a physical address. Instead, it

carries an Interrupt Target ID. The system routes the interrupt packet to the

UltraSPARC port specified by the Target ID.

When UltraSPARC receives an interrupt:

1. SC sends the P_INT_REQ transaction to UltraSPARC on the SYSADDR

bus; it sends an S_SWIB reply to transfer the interrupt data on the

SYSDATA bus. The low order 64-bits of each of the first three 128-bit data

words are captured in the Incoming Interrupt Vector Data registers. An

interrupt_vector trap is taken if PSTATE.IE (Interrupt Enable) is set.
Sun Microelectronics
116

7. UltraSPARC External Interfaces
2. After software clears BUSY in the Interrupt Vector Receive register,

UltraSPARC sends a P_IAK reply. UltraSPARC supports only one

outstanding P_INT_REQ transaction; SC can send the next P_INT_REQ

request on the cycle after the P_IAK reply.

When UltraSPARC sends an interrupt:

1. If SC can deliver the interrupt transaction to the target (that is, if the target

UltraSPARC does not have another outstanding interrupt), SC issues an

S_WAB reply to the sending UltraSPARC, commanding it to drive the

interrupt data on SYSDATA. UltraSPARC clears the BUSY and NACK bits

in the Interrupt Vector Dispatch Register.

2. If SC cannot deliver the interrupt (because the target has an outstanding

interrupt), SC should issue an S_INAK to the sending UltraSPARC.

UltraSPARC clears the BUSY bit and sets the NACK bit in its Interrupt

Vector Dispatch Register. In this case, software can retry later after some

backoff period.

7.12.1 Extended Interrupt Target ID

During an interrupt send, UltraSPARC also passes PA<20:19> to create an extend-

ed MID<6:5> field. (See Chapter 9, “Interrupt Handling.”) This may be useful for

extending the interrupt send domain. This extended MID is not present any-

where else, however; for example, in the P_REPLYs or other address packets.

7.12.2 P_IAK Assertion

After UltraSPARC receives an interrupt (P_INT_REQ), it waits until software

clears the BUSY bit in the Interrupt Vector Receive Register and then asserts

P_IAK. This informs SC that UltraSPARC is ready to receive another interrupt.

Software can clear the BUSY bit in the Interrupt Vector Receive Register at any

time. UltraSPARC issues P_IAK only when the BUSY bit is cleared following a

P_INT_REQ that has not been P_IAKed.

7.13 P_REPLY and S_REPLY

7.13.1 P_REPLY

P_REPLY is a 5-bit physical interface between each UltraSPARC and the SC. Each

UltraSPARC drives the P_REPLY pins radially to SC. Figure 7-22 shows the

P_REPLY packet format.
Sun Microelectronics
117

UltraSPARC User’s Manual
Figure 7-22 P_REPLY Packet Format (Cycle 2 not present in all P_REPLYs)

P_REPLYs take either one or two interconnect clock cycles. The first cycle con-

tains the P_REPLY type, and the Class bit. The second cycle, if present, contains

the Master ID (MID) of the UltraSPARC that generated the original request.

Table 7-17 shows the P_REPLY encodings and the number of cycles in each pack-

et.

The Class values are indicated as follows:

• 0=hardwired to 0

• X=don't care

• C=Copied from the P_REQ packet

With the exception of P_FERR, UltraSPARC generates all P_REPLYs as an ac-

knowledgment to a previous SC request. UltraSPARC can assert P_FERR at any

time to indicate a fatal error requiring system reset. upon seeing P_FERR from

any UltraSPARC, SC should assert RESET_L to all interconnect ports.

Table 7-17 P_REPLY Encoding

Type Cycles Name Reply to Transaction Class Type

P_IDLE 1 Idle Default State 0 0000

P_FERR 1 Fatal Error All transactions, any time X 0100

P_RERR 2 Read Data Error P_NCBRD_REQ C 0101

P_SNACK 2 Coherent S_REQ Non Existent ACK S_REQ C 0111

P_RAS 2 Read ACK Single P_NCRD_REQ C 1000

P_SACK 2 Coherent S_REQ ACK S_REQ C 1010

P_IAK 2 Interrupt Acknowledge P_INT_REQ C 1100

P_SACKD 2 Coherent S_REQ Dirty Victim ACK S_REQ C 1101

Class

Type
Master ID (MID)

Cycle 2Cycle 1

4

3

0

4

0

Sun Microelectronics
118

7. UltraSPARC External Interfaces
Table 7-18 specifies the P_REPLY types.

7.13.2 S_REPLY

S_REPLY is a 4-bit physical interface between each SC and each UltraSPARC. SC

drives the S_REPLY pins radially to each UltraSPARC. Figure 7-23 shows the

S_REPLY packet format.

Figure 7-23 S_REPLY Packet Format

Table 7-18 P_REPLY Type Definitions

Type Definition
P_IDLE Idle. The default state when no reply is asserted. UltraSPARC drives P_IDLE after Power-On Reset.

P_RERR Read Error. Returned by UltraSPARC in response to a noncached block read request from SC. No data is

transferred. Cacheable read requests produce undefined results.

P_FERR Fatal Error. Indicates that system coherency has been lost and SC should generate a system-wide

Power-on-Reset (POR). UltraSPARC sends P_FERR when it detects a parity error on SYSADDR or in

the E-Cache tags. UltraSPARC can assert P_FERR at any time, not only in response to an S_REQ.

P_RAS Read ACK Single. UltraSPARC is ready to drive 16 bytes of read data on SYSDATA for the

P_NCRD_REQ request from SC. The next noncacheable P_REQ can be sent.

P_IAK Interrupt Acknowledge. Reply to a P_INT_REQ from SC. UltraSPARC acknowledges that the interrupt

transaction has been serviced; SC can send the next P_INT_REQ request and its data.

P_SACK Coherent Read ACK Block. Asserted for coherent S_REQ when the datum is in the cache and not pending

a Writeback due to victimization. If the S_REQ is for Copyback, P_SACK also indicates that

UltraSPARC is ready to transfer 64 bytes of data to SYSDATA.

P_SACKD Coherent Read ACK Block Dirty Victim. Asserted for S_INV_REQ or S_CPI_REQ when the datum has

been victimized and is pending a Writeback. SC can use this reply to cancel the subsequent Writeback

transaction for the dirty victim when this UltraSPARC issues it. UltraSPARC issues either P_SACK or

P_SACKD or S_CPB_REQ or S_CPD_REQ when the datum is pending a Writeback; no cancellation is

needed in this case. If the S_REQ is for Copyback, P_SACKD also indicates that UltraSPARC is ready to

transfer 64 bytes of data to SYSDATA.

P_SNACK NonExistent Block. No data is transferred. Reply to any coherent S_REQ with NDP=1 when the block

does not exist in the E-Cache. This is not a valid reply when NDP=0.

Type

Cycle 1

3

0

Sun Microelectronics
119

UltraSPARC User’s Manual
S_REPLY takes a single interconnect clock cycle. SC asserts S_REPLY to initiate

data transfer to/from UltraSPARC and to acknowledge P_REQs from

UltraSPARC. Table 7-19 specifies the S_REPLY encodings.

SC must obey the following rules when generating S_REPLYs:

1. There is no ordering of S_REPLYs between transaction classes. Within each

Class, however, S_REPLYs must be strongly ordered.

2. Figure 7-24 on page 123 and Figure 7-25 on page 123 show S_REPLY timing

to the source and sink of data. UltraSPARC drives data 2 clock cycles after

receiving S_WAB, S_WAS, S_SRS or S_CRAB. UltraSPARC receives data 1

clock cycle after S_RBU, S_RBS, S_RAS, or S_SWIB.

3. Figure 7-26 on page 123 shows S_REPLY read data timing after receiving a

P_REPLY from UltraSPARC. There are a minimum of two clock cycles

between when SC receives the P_REPLY and when it can send the

S_REPLY to initiate the data transfer. Figure 7-26 also shows the handshake

for delivering data to UltraSPARC.

4. Figure 7-27 on page 124 shows the timing for back-to-back S_REQs for

Copyback. The earliest that SC can send another S_REQ to the same

UltraSPARC is the cycle after it sends the S_REPLY.

Table 7-19 S_REPLY Encoding

S_REPLY Name Reply to Transaction Type

S_IDLE Idle Default State 0000

S_ERR Error Report Read Error 0001

S_CRAB Coherent Read ACK Block To slave for P_SACK or P_SACKD reply 0010

S_WBCAN Writeback Cancel To master for P_WRB_REQ 0011

S_WAS Write ACK Single To master for P_NCWR_REQ 0100

S_WAB Write ACK Block To master for any block write 0101

S_OAK Ownership ACK To master for P_RDO_REQ 0110

S_INAK Interrupt NACK To master for P_INT_REQ 0111

S_RBU Read Block ACK Unshared To master for any block read 1000

S_RBS Read Block ACK Shared To master for coherent shared read 1001

S_RAS Read ACK Single To master for P_NCRD_REQ 1010

S_RTO Read Time Out To master, forwarding P_RTO, read to unimplemented address 1011

S_SRS Slave Read Single Read 16 bytes of data from slave 1110

S_SWIB Slave Write Interrupt Block Write 64 bytes of interrupt data to slave 1101

Reserved — — 1111
Sun Microelectronics
120

7. UltraSPARC External Interfaces
5. SC can pipeline some S_REPLYs that do not have an accompanying data

transfer (S_OAK, S_RTO, S_ERR), even while data is being transferred on

SYSDATA due to a previous S_REPLY. See Figure 7-28 on page 124. Even

though S_WBCAN or S_INAK do not have an accompanying data transfer,

SC cannot pipeline these S_REPLYs; SC must wait to issue S_WBCAN or

S_INAK until a cycle in which an S_WAB would be allowed.

6. SC can pipeline S_REPLY types that have an accompanying data transfer,

such that the SYSDATA bus can be kept continually busy without any dead

cycles, as long as the same source is driving the data. If sources are

switched, one dead cycle is required on SYSDATA; this allows the first

source to switch off before the next source can drive the data. The earliest

that the next source can drive the data is in the cycle following the dead

cycle; thus, the pipelining of data accompanying S_REPLY types to the sink

UltraSPARC is adjusted with one extra bubble for the dead cycle.

7. Figure 7-28 on page 124 shows the ordering of S_REPLYs for delivering

data to UltraSPARC.

Table 7-20 on page 122 specifies the S_REPLY types.
Sun Microelectronics
121

UltraSPARC User’s Manual
Table 7-20 S_REPLY Type Definitions

Type Definition

S_IDLE Idle. Default state; no reply is asserted. SC should drive S_IDLE after Power-On Reset.

S_RTO Read Time-out. No data is transferred. SC uses S_RTO to indicate time-outs on read transactions.

UltraSPARC generates an instruction_access_error or data_access_error exception and logs time out status

in the Asynchronous Fault Status Register.

S_ERR Error. No data is transferred. SC asserts S_ERR for implementation-specific bus errors detected on read

transactions. UltraSPARC generates an instruction_access_error or data_access_error exception and logs

bus error status in the AFSR.

S_WAS Write ACK Single to UltraSPARC. SC commands UltraSPARC’s output data queue to drive 16 bytes of

data on SYSDATA in response UltraSPARC prior P_NCWR_REQ request.

S_WAB Write ACK Block to UltraSPARC. SC commands UltraSPARC’s output data queue to drive 64 bytes of

data on SYSDATA in response to UltraSPARC’s prior P_NCBWR_REQ, P_WRB_REQ, P_WRI_REQ, or

P_INT_REQ request.

S_OAK Ownership ACK Block to UltraSPARC. No data is transferred. SC generates S_OAK in response to a

P_RDO_REQ from an UltraSPARC that has the data in its E-Cache but needs write permission on it.

S_RBU Read Block Unshared ACK to UltraSPARC. SC commands the requesting UltraSPARC’s input data queue

to receive 64 bytes of unshared or noncached data on SYSDATA. Issued in response to a P_RDS_REQ,

P_RDO_REQ, or P_NCBRD_REQ request from UltraSPARC.

S_RBS Read Block Shared ACK to UltraSPARC. SC commands the requesting UltraSPARC’s input data queue to

receive 64 bytes of shared data on SYSDATA. Issued in response to a P_RDS_REQ, P_RDSA_REQ, or

P_RDD_REQ request from UltraSPARC.

S_RAS Read ACK Single to UltraSPARC. SC commands the requesting UltraSPARC’s input data queue to

receive 16 bytes of data on SYSDATA. Issued in response to a P_NCRD_REQ request from UltraSPARC.

S_CRAB Copyback Read Block ACK to UltraSPARC. SC commands the output data queue of the UltraSPARC that

contains the block to drive 64 bytes of copyback data on SYSDATA. Issued in response to a P_SACK or

P_SACKD reply from UltraSPARC containing the block. This is last step in a cache-to-cache transfer

sequence in which the requesting UltraSPARC receives data from the copyback UltraSPARC. The entire

sequence is P_RD*_REQ → S_CBP_REQ / S_CPI_REQ / S_CPD_REQ → P_SACK / P_SACKD →

S_CRAB. The S_CRAB reply allows SC to send the next coherent S_REQ transaction (S_INV_REQ,

S_CPI_REQ, S_CPB_REQ, or S_CPD_REQ).

S_SWIB Interrupt Write Block ACK to UltraSPARC. SC commands target UltraSPARC’s Incoming Interrupt Vector

Data registers to accept 64 bytes of interrupt data from SYSDATA. (The registers actually receive only

the low-order 64 bits of each of the first three 128-bit data words, even though the entire 64 bytes is

transferred on the bus.) In parallel (on SYSADDR), SC forwards the P_INT_REQ request associated

with this block to the Interrupt Request Register of the target UltraSPARC.

S_WBCAN Writeback Cancel ACK to UltraSPARC. SC generates S_WBCAN if a previously sent P_WRB_REQ must

be cancelled. No data is transferred.

S_INAK Interrupt NACK. No Data is transferred. SC generates S_INAK (instead of S_WAB) to NACK the source

UltraSPARC’s P_INT_REQ request when the interrupt target cannot accept another interrupt packet.

UltraSPARC records the NACK status in its Interrupt Vector Dispatch Register, signalling software to

retry sometime later. This is the only transaction that is NACKed by SC.

S_SRS Slave Read Single. SC commands the output data queue of the slave port to drive 16 bytes of data on

SYSDATA in response to the slave’s P_RAS reply.

S_SRB Slave Read Block. SC commands the output data queue of the slave port to drive 64 bytes of data on SYS-

DATA in response to the slave’s P_SACK reply. UltraSPARC never receives this S_REPLY.

S_SWB Slave Write Block. SC commands the input data queue of the slave port to read 64 bytes of data from

SYSDATA in response to the slave’s P_SACK reply. UltraSPARC never receives this S_REPLY.
Sun Microelectronics
122

7. UltraSPARC External Interfaces
7.13.3 P_REPLY and S_REPLY Timing

The following figures show the data flow on SYSDATA due to S_REPLY and

P_REPLY with no data stalls. Figure 7-25 also shows the timing of the

interconnect_ECC_Valid signal with respect to the S_REPLY. Section 7.13.4 dis-

cusses data flow timing with data stalls.

Figure 7-24 S_REPLY Timing: UltraSPARC Sourcing Block Write—No Data Stall

Figure 7-25 S_REPLY Timing: UltraSPARC Receiving Block Write—No Data Stall

Figure 7-26 P_REPLY Timing: Blk/Single/Coherent Rd fromUltraSPARC—No Data Stall

S_REPLY

Data on Bus

S_WAB

D[0] D[1] D[2] D[3]

2 clocks

S_REPLY to Data Sink

Data on Bus

S_SWB

D[0] D[1] D[2] D[3]

1 clock

interconnect_ECC_Valid

S_REPLY to Data Sink

Data on Bus

S_SWB

D[0] D[1] D[2] D[3]

1 clock

S_REPLY to Data Source

P_REPLY from Slave P_RAS

S_SRS

min 2 clocks

2 clocks
Sun Microelectronics
123

UltraSPARC User’s Manual
Figure 7-27 Back-to-Back Coherent S_REQs to UltraSPARC

Figure 7-28 S_REPLY Pipelining to UltraSPARC for Data Transfers

7.13.4 Data Stall

Normally, each 128-bit data word of a 64-byte block transfer flows on SYSDATA

in successive clock cycles without stalls. To facilitate flexible timings for DRAMs,

however, a Data_Stall signal is provided to allow the SC to delay individual

128-bit transfers. Data_Stall also qualifies the S_REPLY signal accompanying a

data transfer. The following rules govern the assertion of Data_Stall:

1. When UltraSPARC is sourcing data, the earliest that SC can assert

Data_Stall is one system clock cycle after it asserts S_REPLY. Asserting

Data_Stall causes the data being driven on SYSDATA during the following
system clock to be held for an additional clock.

S_REPLY to Get Data

P_REPLY

S_REQ S_REQ

Earliest S_REQ2

S_REQ2

P_SACK

S_CRAB

NCWR1

S_REPLY to UltraSPARC

P_REQ from UltraSPARC

Data on Bus

NCWR1 NCWR2 NCWR2 RDS3 RDS3

S_WAS S_WAS2 S_RBU3

D[1] D[2] D[3]
Sun Microelectronics
124

7. UltraSPARC External Interfaces
Thus, the sourcing of the first quadword is always with respect to the

S_REPLY. Data_Stall determines the number of clock cycles that the

quadword stays on SYSDATA (that is, the number of stalls). Figure 7-29

shows the data stall timing to UltraSPARC sourcing data.

2. When UltraSPARC is sinking data, SC can assert Data_Stall in the same

system clock cycle that the S_REPLY is asserted. The assertion of Data_Stall

delays latching of the quadword being received on SYSDATA during the

following system clock.

Thus, the latching of any quadword (including the first quadword) at the

sink UltraSPARC can be delayed for an arbitrary number of clock cycles by

keeping Data_Stall asserted for that many clock cycles. Figure 7-30 shows

the data stall timing to UltraSPARC sinking data.

3. SC cannot assert Data_Stall if there is no data transfer accompanying the

S_REPLY (S_WBCAN, S_OAK, S_INAK, S_RTO, S_ERR).

The data stall rules also apply to single quadword transfers (noncached

reads or writes).

Figure 7-29 Data_Stall to UltraSPARC Sourcing Data

In Figure 7-29 the quad-word D0 is held valid for one extra clock cycle.

Data Stall

Data on Bus D[0] D[1] D[2] D[3]

1 clock

S_REPLY to Data Source S_REPLY
Sun Microelectronics
125

UltraSPARC User’s Manual
Figure 7-30 Data_Stall to UltraSPARC Sinking Data

In Figure 7-30 latching of the first quadword D0 is deferred by one clock cycle.

7.14 Multiple Outstanding Transactions

7.14.1 Ordering of S_REPLYs

UltraSPARC-I supports only one outstanding 64-byte read (P_RD*_REQ or

P_NCBRD_REQ in Class 0). In addition, since a single read buffer is used for all

reads, UltraSPARC-I supports only one outstanding read of any type. Thus,

P_RD*_REQ or P_NCBRD_REQ in Class 0 and P_NCRD_REQ in Class 1 cannot

be outstanding simultaneously.

UltraSPARC-II supports three outstanding 64-byte reads (P_RD*_REQ or

P_NCBRD_REQ in Class 0). As in UltraSPARC-I, P_RD*_REQ / P_NCBRD_REQ

is mutually exclusive with P_NCRD_REQ. if any P_NCRD_REQ is outstanding,

UltraSPARC-II will not issue any other request. Finally, UltraSPARC-II will not is-

sue a P_NCRD_REQ if any Class 0 transaction is outstanding.

UltraSPARC issues all other transactions in Class 1, and can have many outstand-

ing. Multiple Class 1 transactions must be completed in the same order that the

address packets are issued. This presents some issues with implementing coher-

ent read / Writeback pairs in systems with another cache coherent memory re-

questor (or another UltraSPARC). The SC may need to maintain intermediate

state to track either the new read miss line or the Writeback line. The read miss

and Writeback may complete in any order, and the Writeback may be queued be-

hind other Class 1 transactions.

64-byte reads must be completed in order. Coherent Writebacks also must be

completed in order, because of the FIFOs used in the implementation.

S_REPLY to Data Sink

Data on Bus D[1] D[2] D[3]

Data Stall

S_REPLY

D[0]
Sun Microelectronics
126

7. UltraSPARC External Interfaces
7.14.2 Minimal Ordering Requirements

An SC can be less strict about the ordering requirements for asserting S_REPLYs

in Class 0 and 1, with respect to the original address packet. This may allow sim-

pler SCs to be built. The details also may be useful for understanding how to gen-

erate useful test cases and which test cases are not possible.

Sun systems have a requirement to preserve the order of 16-byte noncacheable

loads and stores. (Both in Class 1.) This is documented in Solaris system require-

ments documents. Also, all 16-byte noncacheable stores must complete in the or-

der issued, because the data must come from a FIFO in the UDB in issue order.

Also, all 64-byte block stores (P_NCBWR_REQ and P_WRI_REQ) must complete

in the order issued, because the data must come from another FIFO in the UDB in

issue order. For instance, even if a Writeback is in Class 1 behind noncacheable

stores, it can be completed out of order. This may allow a simpler read with

Writeback solution in an SC.

UltraSPARC always issues a dirty victim read miss before its corresponding

Writeback. If the E-Cache data bus is busy or if the assertion of an external re-

quest takes away SYSADDR, the Writeback can be delayed.

A Writeback is not issued during outstanding block stores (P_NCBWR_REQ or

P_WRI_REQ) or interrupt sends (P_INT_REQ).

Block stores (P_NCBWR_REQ/P_WRI_REQ) are not issued during outstanding

Writebacks or interrupt sends. An interrupt send is not mixed with outstanding

block stores or Writebacks.

7.14.3 Class 1 Strong Ordering

SC must complete all prior 16-byte noncacheable stores (P_NCWR_REQ) before

completing a P_NCRD_REQ. This is necessary to meet a software requirement

that all noncacheable operations to I/O space be strongly ordered. The E-bit fea-

ture of UltraSPARC does not wait for prior noncacheable operations to complete

(as do MEMBARs); it relies on the system to enforce strong ordering (that is, to

ensure that completion order equals issue order). For a description of the E-bit

see Section 6.2, “Translation Table Entry (TTE),” on page 41.

While a 16-byte noncacheable load is outstanding (P_NCRD_REQ), UltraSPARC

will not issue any more transactions, so the reverse case—completing noncache-

able loads before noncacheable stores—does not occur.
Sun Microelectronics
127

UltraSPARC User’s Manual
7.14.4 Blocked Issue of Reads with Writebacks

UltraSPARC delays issuing a read miss / Writeback transaction pair (both the

P_RD*_REQ with DVP=1, and the P_WRB_REQ) for any of the following reasons:

• The read or the Writeback is constrained to not issue due to restrictions on the

allowed number of outstanding transactions in Class 0 or 1

• Any other constraints on the issue of the Writeback, with respect to

outstanding transactions.

The Writeback also may be blocked because the E-Cache data bus is unavailable;

this condition does not block the read miss, however.

So, UltraSPARC will not issue a read miss / Writeback pair (either the read or the

Writeback) if there is any outstanding block store or interrupt, because the Write-

back is blocked. Therefore, for UltraSPARC-I, a read miss with Writeback can

have only prior noncacheable 16-byte stores outstanding. As noted before, there

is no requirement to complete these noncacheable stores before the Writeback.

Typical systems will, however, since they complete all Class 1 transactions in or-

der.

Additionally, UltraSPARC-I restricts the issue of a read with Writeback until any

prior read with Writeback has completed fully (both the prior read and Write-

back). A prior outstanding Writeback does not delay the issue of a clean read

miss (DVP=0).

7.14.5 Limiting the Number of Transactions in a Class

UltraSPARC-I limits the number of transactions in Class 1 and also limits the

number of outstanding 16-byte noncacheable stores and block stores.

UltraSPARC-II also has the ability to limit the number of outstanding Class 0 64-

byte reads, and the number of Writebacks in Class 1. See Section 8.3.3.2, “UPA

Configuration Register,” on page 154 for more information.

7.14.6 S_REPLY Timing Constraints

In asserting S_REPLYs, SC must guarantee that there is at least one dead cycle

whenever the bus driver changes (for example, from UltraSPARC to memory).

No dead cycle is required for multiple packets from the same driver, however.

S_OAK, S_RTO, and S_ERR have no data transfer; they can be issued at any time.

See Constraint #5 on page 121.
Sun Microelectronics
128

7. UltraSPARC External Interfaces
Even though S_WBCAN and S_INAK have no data transfer, they must be sched-

uled as if they used SYSDATA; that is, they can be issued only when an S_WAB

or S_WAS would have been allowed. They do not add any SYSDATA use cycles,

however, for deciding when and which S_REPLYs can be issued after them.

7.15 Transaction Set Summary

Table 7-21 summarizes the requests and replies generated by UltraSPARC

Table 7-21 summarizes the requests and replies generated by the SC.

Table 7-21 Requests and Replies Generated by UltraSPARC

Requests Replies

P_RDS_REQ P_IDLE

P_RDSA_REQ P_RERR

P_RDO_REQ P_RAS

P_RDD_REQ P_SACK

P_WRB_REQ P_SACKD

P_WRI_REQ P_SNACK

P_NCRD_REQ P_IAK

P_NCWR_REQ P_FERR

P_NCBRD_REQ

P_NCBWR_REQ

P_INT_REQ

Table 7-22 Requests and Replies Generated by SC

Requests Replies

S_INV_REQ S_IDLE

S_CPB_REQ S_RTO

S_CPI_REQ S_ERR

S_CPD_REQ S_WAS

S_CPB_MSI_REQ S_WAB

P_NCRD_REQ S_OAK

P_NCBRD_REQ S_RBU

P_INT_REQ S_RBS

S_RAS

S_SRS

S_SRB

S_CRAB

S_SWIB

S_INAK

S_WBCAN
Sun Microelectronics
129

UltraSPARC User’s Manual
Table 7-23 and Table 7-24, respectively specify the legal request/reply combina-

tions for UltraSPARC and the SC.

1. UltraSPARC-I supports only one outstanding writeback transaction. The writeback and its concomitant dirty victim
read transaction must both complete before a second writeback or a second dirty victim read is issued. UltraSPARC-II
supports two outstanding writeback transactions.

2. There is no data transfer for these S_REPLY types.

1. UltraSPARC can generate P_FERR at any time, even if there is no outstanding system transaction; it should cause SC
to generate a system wide Power-on Reset.UltraSPARC asserts P_FERR when it detects a parity error on the request
packet or the E-Cache tags. There is no data transfer.

2. SC issues S_REPLY only if there is no error and data is to be transferred to/from UltraSPARC.

Table 7-23 Valid Request and Reply Types—UltraSPARC to SC

UltraSPARC Request Reply from SC

P_RDS_REQ S_RBU or S_RBS or S_ERR2 or S_RTO2

P_RDSA_REQ S_RBS or S_ERR2 or S_RTO2

P_RDO_REQ S_OAK2 or S_RBU or S_ERR2 or S_RTO2

P_RDD_REQ S_RBS or S_ERR2 or S_RTO2

P_WRB_REQ1 S_WAB or S_WBCAN2

P_WRI_REQ S_WAB

P_NCBWR_REQ S_WAB

P_NCWR_REQ S_WAS

P_NCBRD_REQ S_RBU or S_ERR2 or S_RTO2

P_NCRD_REQ S_RAS or S_ERR2 or S_RTO2

P_INT_REQ S_WAB or S_INAK2

Table 7-24 Valid Request and Reply Types—SC to UltraSPARC

SC Request P_REPLY from UltraSPARC S_REPLY from SC2

S_INV_REQ P_SACK or P_SACKD or P_SNACK or P_FERR1 None

S_CPB_REQ P_SACK or P_SACKD or P_SNACK or P_FERR1 S_CRAB

S_CPD_REQ P_SACK or P_SACKD or P_SNACK or P_FERR1 S_CRAB

S_CPI_REQ P_SACK or P_SACKD or P_SNACK or P_FERR1 S_CRAB

P_NCRD_REQ P_RAS or P_FERR1 S_SRS

P_INT_REQ P_IAK or P_FERR1 S_SWIB
Sun Microelectronics
130

7. UltraSPARC External Interfaces
7.16 Transaction Sequences

This section describes the basic coherent transaction sequences, illustrating the

sequence of events that transpire as a function of cache states and transaction

type.

The transaction sequences are described in separate tables for each interesting

combination of transaction and initial state. Time moves downwards through the

table; events specified in the same row occur at the same time. The cache state of

the requested block in a processor is denoted by the Etag entry. If a processor

does not have the missed block, the block state for the datum is denoted by

Etag{I}.

Note: These tables do not necessarily indicate what happens in each clock cycle;

instead, they show the transfer of control between the processors and the SC.

Thus, each table row may represent zero or more clock ticks.

7.16.1 ReadToShare Block

Condition: Load miss on Processor 1; no other processor has the data.

7.16.2 ReadToShareAlways Block

Condition: I-Cache miss on Processor 1; no other processor has the data.

Table 7-25 ReadToShare First Read

Processor 1 SC Processor 2 Processor 3

Initial state: Etag{I}

P_RDS_REQ to System

Initial state: Etag{I} Initial state: Etag{I}

Start read from memory

S_RBU reply to P1

P1 updates Etag{I → E} Final state: No change Final state: No change

Table 7-26 ReadToShareAlways Instruction Miss

Processor 1 System Processor 2 Processor 3

Initial state: Etag{I}

P_RDSA_REQ to System

Initial state: Etag{I} Initial state: Etag{I}

Start read from memory

S_RBS reply to P1

P1 updates Etag{I → S} Final state: No change Final state: No change
Sun Microelectronics
131

UltraSPARC User’s Manual
7.16.3 ReadToShare Block

Condition: Load miss on Processor 1; another processor (P2) has the data exclu-

sively.

If the load miss on Processor 1 victimizes a clean block instead an invalid block,

the sequence is the same.

7.16.4 ReadToShare Block

Condition: Load miss on Processor 1; another processor (P2) has a modified copy

of the block.

Table 7-27 ReadToShare One Processor Has it Exclusively

Processor 1 System Processor 2 Processor 3

Initial state: Etag{I}

P_RDS_REQ to System

Initial state: Etag{E} Initial state: Etag{I}

S_CPB_REQ to P2

P2 copies block to copyback

buffer

P2 updates Etag{E → S}

P_SACK reply to System

S_CRAB reply to P2

S_RBS reply to P1

P1 updates Etag{I → S} Final state: Etag{S} Final state: No change

Table 7-28 ReadToShare Dirty Block

Processor 1 System Processor 2 Processor 3

Initial state: Etag{I}

P_RDS_REQ to System

Initial state: Etag{O} Initial state: Etag{S}

S_CPB_REQ to P2

P2 copies block to copyback

buffer

P_SACK reply to System

S_CRAB reply to P2

S_RBS reply to P1

P1 updates Etag{I → S} Final state: No change Final state: No change
Sun Microelectronics
132

7. UltraSPARC External Interfaces
When Processor 2’s initial state is Etag{M} the sequence is the same, except that

Processor 2 transitions to Etag{O}. Processor 3 initial state is Etag{I} by definition

in this case, and no transaction is generated to it by SC.

When Processor 2’s initial state is Etag{S} the sequence is the same.

When the miss victimizes a clean block instead of an invalid block, the sequence

is the same.

7.16.5 ReadToOwn Block

Condition: Store miss on Processor 1; Processors 2 and 3 each have clean copies of

the block.

When the miss victimizes a clean block instead of an invalid block the sequence

is the same.

When Processor 2’s initial state is Etag{M or O}, the sequence is the same.

7.16.6 ReadToOwn Block

Condition: Store hit on Processor 1; another processor (P2) owns the block.

Table 7-29 ReadToOwn Shared Block

Processor 1 System Processor 2 Processor 3

Initial state: Etag{I}

P_RDO_REQ to System

Initial state: Etag{S} Initial state: Etag{S}

S_CPI_REQ to P2

S_INV_REQ to P3

P2 copies block to copyback

buffer

P2 updates Etag{S → I}

P_SACK reply to System

P3 updates Etag{S → I}

P_SACK reply to System

S_CRAB reply to P2

S_RBU reply to P1

P1 updates Etag{I → M} Final state: Etag{I}
Sun Microelectronics
133

UltraSPARC User’s Manual
The sequence is the same for any valid states in Processors 2 and 3.

If no processor has the block, the SC does not generate any S_INV_REQ.

7.16.7 ReadToDiscard Any Block

Condition: Noncacheable read on Processor 1; another processor (P2) owns the

block.

7.16.8 Victim Writeback

Condition: Load or store miss on dirty victim block. SC services read before

Writeback.

Table 7-30 ReadToOwn for Write Permission

Processor 1 System Processor 2 Processor 3

Initial state: Etag{S}

P_RDO_REQ to System

Initial state: Etag{O} Initial state:Etag{S}

S_INV_REQ to P2

S_INV_REQ to P3

P2 updates Etag{O → I}

P_SACK to System

P3 updates Etag{S → I}

P_SACK to System

S_OAK to P1

(no data is transferred)

P1 updates Etag{S → M} Final state: Etag{I} Final state: Dtag{I}

Table 7-31 ReadToDIscard

Processor 1 System Processor 2 Processor 3

Initial state: Etag{I}

P_RDD_REQ to System

Initial state:

Etag{M} or

Etag{O} or

Etag{E}

Initial state:

Etag{I}

S_CPD_REQ to P2

P2 copies block to copy-

back buffer

P_SACK reply to System

S_CRAB reply to P2

S_RBS reply to P1

Final state: No change Final state: No change Final state: No change
Sun Microelectronics
134

7. UltraSPARC External Interfaces
The following transaction sequence is the same as for Section 7.16.1, “Read-

ToShare Block,” except that the miss generates a dirty victim block. UltraSPARC

always issues the read request before the Writeback request, but the requests can

be completed in any order. In this example, the read completes first. The follow-

ing section shows the sequence when the Writeback completes first.

7.16.9 Victim Writeback Serviced Before Read

Condition: Load/store miss on dirty victim block. SC services Writeback before

read.

Table 7-32 Victim Writeback, Read Miss Serviced Before Writeback

Processor 1 System Processor 2 Processor 3

Initial victim state:

Etag1{M},

Initial missed state:

Etag2{I}

P1 copies the victim block into

the Writeback buffer

P_RDS_REQ to System

(DVP bit set)

Initial state:

Etag2{I}

Initial state:

Etag2{I}

S_RBU reply to P1

P1 updates Etag2{I → E}

P_WRB_REQ to System

S_WAB reply to P1

P1 clears Writeback buffer tag Final state: No change Final state: No change

Table 7-33 Victim Writeback: Writeback Serviced Before Read Miss

Processor 1 System Processor 2 Processor 3

Initial victim state:

Etag1{M}

Initial missed state:

Etag2{I}

P1 copies the victim block

into the writeback buffer

P_RDS_REQ to System

(DVP bit set)

P_WRB_REQ to System

Initial state:

Etag2{I}

Initial state:

Etag2{I}

S_WAB reply to P1

Start write to memory

P1 clears writeback buffer tag
Sun Microelectronics
135

UltraSPARC User’s Manual
7.16.10 ReadToShare Dirty Victimized Block

Condition: Load miss by another processor (P2) on a dirty line for which Proces-

sor 1’s Writeback transaction has not yet completed.

The following transaction sequence is the same as is Section 7.16.8, “Victim Write-

back,” except that another processor (P2) makes a ReadToShare request for the

victimized block in P1 before SC has acknowledged P1’s Writeback transaction.

Start read from memory

S_RBU reply to P1

P1 reads the data

updates Etag2{I → E}

Final state:

No change

Final state:

No change

Table 7-34 Copyback Dirty Victimized Block

Processor 1 System Processor 2 Processor 3

Initial victim state:

Etag1{M}

Initial missed state:

Etag2{I}

P1 copies the victimized block into the

writeback buffer}

P_RDS_REQ to System

(DVP bit set)

Initial state:

Etag1{I}

Initial state:

Etag2{I}

Initial state:

Etag2{I}

S_RBU reply to P1

P1 reads the data,

updates Etag2{I → E}

P_RDS_REQ to System

for the victim block in P1

S_CPB_REQ to P1

P1 makes another copy of the victim

block into the copyback buffer

P_SACKD or P_SACK reply to System

S_CRAB reply to P1

 S_RBS reply to P2

P2 reads data and

updates Etag1{I → S}

P_WRB_REQ to System

S_WAB reply to P1

P1 clears writeback buffer tag Final State: No change Final state: Etag1{S} Final state: No change

Table 7-33 Victim Writeback: Writeback Serviced Before Read Miss

Processor 1 System Processor 2 Processor 3
Sun Microelectronics
136

7. UltraSPARC External Interfaces
7.16.11 ReadToOwn Dirty Victimized Block

Condition: Store miss by another processor (P2).

The transaction sequence shown in Table 7-35 is the same as in Section 7.16.8,

“Victim Writeback,” except that another processor P2 makes a ReadToOwn re-

quest for the victimized block in P1 before the Writeback transaction from P1 has

been acknowledged by System.

Table 7-35 Copyback-Invalidate Dirty Victimized Block

Processor 1 System Processor 2 Processor 3

Initial victim state:

Etag1{M}

Initial missed state:

Etag2{I}

P1 copies the victimized block into

the writeback buffer}

P_RDS_REQ to System

(DVP bit set)

Initial state:

Etag1{I}

Initial state:

Etag2{I}

Initial state:

Etag2{I}

S_RBU reply to P1

P1 reads the data

updates Etag2{I → E}

P_RDO_REQ to System for

victim block in P1.

S_CPI_REQ to P1

P1 makes another copy of the victim

block in the copyback buffer

P_SACKD reply to System

 S_CRAB reply to P1

 S_RBU reply to P2

P2 reads data and updates

Etag1{I → M}

P_WRB_REQ to system

S_WBCAN to P1

(as the Writeback has been

cancelled due to the earlier

CPI request from System due

to P2’s RDO request)

P1 clears writeback buffer tag
Sun Microelectronics
137

UltraSPARC User’s Manual
7.16.12 ReadToOwn Dirty Victimized Block

Condition: Store hit by another processor (P2).

The following transaction sequence is the same as for Section 7.16.5, “Read-

ToOwn Block,” except that P2 already has the block in the Shared state (store hit),

and P1 has the victimized block in the Owned state (due to the previous Read-

ToShare request from P2).

7.17 Interconnect Packet Formats
This section specifies the packet formats for the Interconnect transaction set. The

transaction request packets are carried over SYSADDR.

Table 7-36 Copyback-Invalidate Dirty Victimized Block in Owned State

Processor 1 System Processor 2 Processor 3

Initial victim state:

Etag1{O}

Initial missed state:

Etag2{I}

P1 copies the victimized block into the

writeback buffer}

P_RDS_REQ to System

(DVP bit set)

Initial state:

Etag1{S}

Initial state:

Etag2{I}

Initial state:

Etag2{I}

S_RBU reply to P1

P1 reads data

updates Etag2{I → E}

P_RDO_REQ to System for

victim block in P1.

S_INV_REQ to P1

P_SACKD to System

S_OAK reply to P2

(no data transfer)

P2 updates Etag1{S → M}

P_WRB_REQ to System serviced now

S_WBCAN reply to P1

P1 clears writeback buffer tag
Sun Microelectronics
138

7. UltraSPARC External Interfaces
7.17.1 Request Packets

The SYSADDR bus is a 36-bit transaction request bus with one odd-parity bit

(SYADDR<35>. The request packet comprises 72 bits and is carried on SYSADDR

in two successive interconnect clock cycles.

Figure 7-31 shows the P_REQ and S_REQ types.

Figure 7-31 Transaction Types

Figures 7-32, 7-33, and 7-34 show the transaction request packet formats.

Packet Type

 Initiated by UltraSPARC

Cache Coherent

P_RDS_REQ
P_RDSA_REQ
P_RDO_REQ

Non-Cached

P_NCWR_REQ

Initiated by SC

Cache Coherent

 S_INV_REQ
 S_CPB_REQ
 S_CPI_REQ

P_WRI_REQ

 S_CPD_REQP_RDD_REQ

P_NCRD_REQ

P_INT_REQ

P_WRB_REQ

P_NCBWR_REQ
P_NCBRD_REQ

Interrupt

Non-Cached

P_NCRD_REQ

P_INT_REQ

P_NCBRD_REQ

Interrupt
Sun Microelectronics
139

UltraSPARC User’s Manual
Figure 7-32 Packet Format: Coherent P_REQ and S_REQ Transactions

Figure 7-33 Packet Format: Noncached P_REQ Transactions

Figure 7-34 Packet Format: P_INT_REQ Transaction

Transaction Type

Physical Address<38:14>

28

31

29

Master ID

First Cycle
35
34

30

35

29

Parity

12

24

33
Class

Physical Address<40:39>

Parity

0

24
25

DVP

34

28
27
25

23
IVA

Physical Address<16:4>

Reserved22-13
NDP

 33
Physical Address<8:6>

Class

0

Reserved

Second Cycle

Master ID

35

29

Parity

Physical Address<16:4>
12

ByteMask<15:0>

33
Class

0

34

28

13

Transaction Type

Physical Address<38:14>

28

31

29

35
34

30 Physical Address<40:39>

Parity

0

24
25

 33 Physical Address<8:6>

Class

First Cycle Second Cycle

Transaction Type
28
29

Master ID<4:0>

35
34

35

29

Parity

Reserved

33
Class

Don’t Care

Parity

0

24
25

34

28

12

Class
 33

Don’t Care

Target ID<4:0>=PA<18:14> Don’t Care

13

0

4
5

First Cycle Second Cycle
Sun Microelectronics
140

7. UltraSPARC External Interfaces
7.17.2 Packet Description

7.17.2.1 Master ID (MID)

MID is a 5-bit field. It identifies the source Interconnect master port that made

this request. MasterID is the same as the port_ID bits. SC can be useMID to main-

tain ordering for transactions with the same MID, and to parallelize requests with

different MIDs.

If the system forwards the request to a slave UltraSPARC for proxy execution, the

slave maintains the MID and returns it to SC in the P_REPLY packet.

7.17.2.2 Transaction Type

This 4-bit field encodes the transaction type, as shown in Table 7-37.

7.17.2.3 Class

The Class bit identifies which of the two master Class queues the request has

been issued from. The system must maintain strong ordering between transac-

tions with the same Class bit and MID field.

Table 7-37 Interconnect Transaction Type Encoding

Transaction Type Name Type

P_RDS_REQ ReadToShare 0000

P_RDSA_REQ ReadtoShareAlways 0001

P_RDO_REQ ReadToOwn 0010

P_RDD_REQ ReadToDiscard 0011

S_CPB_MSI_REQ CopybackGotoSstate 0100

P_NCRD_REQ NonCachedRead 0101

P_NCBRD_REQ NonCachedBlockRead 0110

P_NCBWR_REQ NonCachedBlockWrite 0111

P_WRB_REQ Writeback 1000

P_WRI_REQ WritebackInvalidate 1001

S_INV_REQ Invalidate 1010

S_CPB_REQ Copyback 1011

S_CPI_REQ CopybackInvalidate 1100

S_CPD_REQ CopybackToDiscard 1101

P_NCWR_REQ NonCachedWrite 1110

P_INT_REQ Interrupt 1111
Sun Microelectronics
141

UltraSPARC User’s Manual
7.17.2.4 Physical Address PA<40:4>

Bits PA<40:4> of the 41-bit physical address space accessible to UltraSPARC.

The low order 4 bits PA<3:0> of the physical address are implied in the bytemask

in P_NCRD_REQ and P_NCWR_REQ transactions. All other transactions transfer

64-byte blocks and thus, PA<3:0>=0.

7.17.2.5 Bytemask<15:0>

Bytemask, used only in P_NCRD_REQ and P_NCWR_REQ. This 16-bit field indi-

cates valid bytes on SYSDATA.

The bytemask indicates 1-, 2-, 4-, 8- and 16-byte noncached read requests to Inter-

connect slave ports. Arbitrary bytemasks are allowed for slave writes, including a

bytemask of all zeros to indicate a no-op at the slave.

Bytemask<0> corresponds to byte 0 (bits <127:120> on SYSDATA).

7.17.2.6 DVP

Dirty Victim Pending writeback bit. This bit is set when a coherent read victim-

ized a dirty line. The system uses this bit for victim handling.

7.17.2.7 IVA

Invalidate me Advisory bit (in P_WRI_REQ transaction only). UltraSPARC sets

this bit if it wants SC to send an S_INV_REQ back to it. SC ignores this bit in sys-

tems that support Dtags.

7.17.2.8 NDP

No Duplicate tag Present Bit. SC sets this bit S_REQ packets only; it is zero in

non-coherent P_REQ slave requests. SC sets NDP in systems that do not track the

E-Cache contents; that is, if the coherent request is for a line that may not be in

the E-Cache or writeback buffer. This bit is zero in systems that track the E-Cache

contents.

If NDP=1, UltraSPARC issues replies to copyback requests with P_SNACK if it

does not have the requested block. If NDP=0, UltraSPARC issues P_SACK if it

does not have the requested block. Actually, when NDP=0, UltraSPARC does not
Sun Microelectronics
142

7. UltraSPARC External Interfaces
perform any tag match on its Etag for S_CPD_REQ, in order to accelerate its

P_REPLY. In this case, the SC’s copyback request is itself an error, indicating that

the Dtags do not accurately reflect the state of the processor’s E-Cache.

7.17.2.9 Target ID<4:0>

This field is only used in the interrupt request packet. It contains the Port ID of

the destination UltraSPARC to which the interrupt packet is to be delivered.

7.17.2.10 Parity

The parity bit is bit 35 of SYSADDR; it protects SYSADDR<34:0} with odd parity.

That is, if the sum of the ‘1’ bits on bits 34:0 is even, Parity is set to 1; otherwise,

Parity is set to 0.

7.18 WriteInvalidate

If UltraSPARC sets the IVA bit in a P_WRI_REQ transaction, the it expects SC to

send an S_INV_REQ for the associated line. In systems with Dtags, the Dtags will

correctly indicate to SC whether or not to send S_INV_REQ to the requestor; in

this case, SC can ignore the IVA bit. In system without Dtags, however, SC must
send the requesting UltraSPARC an S_INV_REQ if IVA=1 in a P_WRI_REQ.

7.18.1 Using the IVA bit in a P_WRI_REQ

UltraSPARC can issue a cache-coherent block store that will guarantee all caches

are invalid when it completes. In this case, SC must issue S_INV_REQ to all ap-

propriate caches, including the master that issued the P_WRI_REQ. This is be-

cause the issuer cannot invalidate the line until the P_WRI_REQ has entered the

memory order, in case there are pending S_REQs coming to that line.

In systems that do not support Dtags, UltraSPARC sets the IVA (Invalidate Advi-

sory) bit to indicate that it needs an S_INV_REQ in order for its P_WRI_REQ to

complete. UltraSPARC can set IVA when it is not needed, but IVA should never

be clear when it should be set.

Since P_WRI_REQs can be outstanding with coherent read misses, there is a pos-

sible race condition if they are to the same address. (The P_WRI_REQs and coher-

ent read misses can complete out of order.) UltraSPARC resolves this by:

• Restricting the issue of some transactions during pending P_WRI_REQs, and
Sun Microelectronics
143

UltraSPARC User’s Manual
• Requiring that software include MEMBARs around loads and stores that can

cause misses and block stores to the same line.

UltraSPARC blocks the issue of instruction fetch miss requests (P_RDSA_REQ)

while there are outstanding block stores; it also inhibits issuing block stores while

there are outstanding instruction fetch miss requests. Otherwise, the IVA bit sent

with a P_WRI_REQ might not be set when it should be, because a subsequent co-

herent miss to the same address might complete first.

Systems with Dtags ignore the IVA bit, so this is not an issue.

Note: This hazard occurs only in uniprocessor systems without Dtags. In

system with Dtags, the requirement for an S_INV_REQ is determined by Dtag

lookup. Since processors must work in both systems, however, they must not

issue P_WRI_REQ for the same block address as an already outstanding

P_RD*_REQ, and not issue any P_RD*_REQ for the same block address as an

already outstanding P_WRI_REQ, until the S_REPLY for the outstanding

transaction is received.
Sun Microelectronics
144

Address Spaces, ASIs, ASRs, and Traps 8
8.1 Overview
A SPARC-V9 processor provides an Address Space Identifier (ASI) with every ad-

dress sent to memory. The ASI is used to distinguish between different address

spaces, provide an attribute that is unique to an address space, and to map inter-

nal control and diagnostics registers within a processor.

SPARC-V9 also has extended the limit of virtual addresses from 32 to 64 bits for

each address spaces. SPARC-V9 continues to support 32-bit addressing by mask-

ing the upper 32-bits of the 64-bit address to zero when the address mask (AM)

bit in the PSTATE register is set.

Both big- and little-endian byte orderings are supported in UltraSPARC. The de-

fault data access byte ordering after a Power-On Reset is big-endian. Instruction

fetches are always big-endian.

8.2 Physical Address Space
The UltraSPARC memory management hardware uses a 44-bit virtual address

and an 8-bit ASI to generate a 41-bit physical address. This physical address

space can be accessed using either virtual-to-physical address mapping or the

MMU bypass mode. See Section 6.10, “MMU Bypass Mode,” for details of MMU

bypass mode.
Sun Microelectronics
145

UltraSPARC User’s Manual
8.3 Alternate Address Spaces
The SPARC-V9 Address Space Identifier (ASI) is evenly divided into restricted

and nonrestricted halves. ASIs in the range 0016 ..7F16 are restricted; ASIs in the

range 8016 ..FF16 are non-restricted. An attempt by non-privileged software to ac-

cess a restricted ASI causes a data_access_exception trap.

ASIs in the ranges 0416 ..1116, 1816..1916, 2416..2C16, 7016 ..7316, 7816..7916 and

8016..FF16 are called “normal” or “translating” ASIs. These ASIs are translated by

the MMU.

Bypass ASIs are in the range 1416..1516 and 1C16..1D16. These ASIs are not trans-

lated by the MMU; instead, they pass through their virtual addresses as physical

addresses.

UltraSPARC Internal ASIs (also called “nontranslating ASIs”) are in the ranges

4516 ..6F16, 7616 ..7716 and 7E16..7F16. These ASIs are not translated by the MMU;

instead, they pass through their virtual addresses as physical addresses. Accesses

made using these ASIs are always made in “big-endian” mode, regardless of the

setting of the D-MMU’s IE bit. Accesses to Internal ASIs with invalid virtual ad-

dress have undefined behavior; they may or may not cause a

data_access_exception trap. They may or may not alias onto a valid virtual ad-

dress. Software should not rely on any specific behavior.

Note: MEMBAR #Sync is generally needed after stores to internal ASIs. A

FLUSH, DONE, or RETRY is needed after stores to internal ASIs that affect

instruction accesses. See Section 5.3.8, “Instruction Prefetch to Side-Effect

Locations,” on page 38.

8.3.1 Supported SPARC-V9 ASIs

The SPARC-V9 architecture defines several address spaces that must be support-

ed by a conforming processor. They are listed in Table 8-1. All operand sizes are

supported in these accesses. See Appendix F, “ASI Names,” for an alphabetical

listing of ASI names and macro syntax.
Sun Microelectronics
146

8. Address Spaces, ASIs, ASRs, and Traps
1 Read-only access; causes a data_access_exception trap if written respectively.

2 Causes a data_access_exception trap if the page being accessed is privileged.

8.3.2 UltraSPARC (Non-SPARC-V9) ASI Extensions

Table 8-2 defines all non-SPARC-V9 ASI extensions supported in UltraSPARC.

These ASIs may be used with LDXA, STXA, LDDFA, STDFA instructions only,

unless otherwise noted. Other length accesses will cause a data_access_exception
trap. See Appendix F, “ASI Names,” for an alphabetical listing of ASI names and

macro syntax.

Table 8-1 Mandatory SPARC-V9 ASIs

ASI
Value

ASI Name (Suggested Macro Syntax) Access Description Section

0416 ASI_NUCLEUS (ASI_N) RW Implicit address space, nucleus

privilege, TL>0,

V9

0C16 ASI_NUCLEUS_LITTLE (ASI_NL) RW Implicit address space, nucleus

privilege, TL>0, little endian

V9

1016 ASI_AS_IF_USER_PRIMARY (ASI_AIUP) RW2 Primary address space, user privilege V9

1116 ASI_AS_IF_USER_SECONDARY

(ASI_AIUS)

RW2 Secondary address space, user

privilege

V9

1816 ASI_AS_IF_USER_PRIMARY_LITTLE

(ASI_AIUPL)

RW2 Primary address space, user privilege,

little endian

V9

1916 ASI_AS_IF_USER_SECONDARY_LITTLE

(ASI_AIUSL)

RW2 Secondary address space, user

privilege, little endian

V9

8016 ASI_PRIMARY (ASI_P) RW Implicit primary address space V9

8116 ASI_SECONDARY (ASI_S) RW Implicit secondary address space V9

8216 ASI_PRIMARY_NO_FAULT (ASI_PNF) R1 Primary address space, no fault V9,

14.4.6

8316 ASI_SECONDARY_NO_FAULT (ASI_SNF) R1 Secondary address space, no fault V9,

14.4.6

8816 ASI_PRIMARY_LITTLE (ASI_PL) RW Implicit primary address space, little

endian

V9

8916 ASI_SECONDARY_LITTLE (ASI_SL) RW Implicit secondary address space, little

endian

V9

8A16 ASI_PRIMARY_NO_FAULT_LITTLE

(ASI_PNFL)

R1 Primary address space, no fault, little

endian

V9,

14.4.6

8B16 ASI_SECONDARY_NO_FAULT_LITTLE

(ASI_SNFL)

R1 Secondary address space, no fault,

little endian

V9,

14.4.6
Sun Microelectronics
147

UltraSPARC User’s Manual
Table 8-2 UltraSPARC Extended (non-SPARC-V9) ASIs

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section

1416 ASI_PHYS_USE_EC

(ASI_PHYS_USE_EC)

— RW 2,5 Physical address, external cache-

able only

6.10

1516 ASI_PHYS_BYPASS_EC_WITH_EBIT

(ASI_PHYS_BYPASS_EC_WITH_EBIT)

— RW2 Physical address, non-cacheable,

with side-effect

6.10

1C16 ASI_PHYS_USE_EC_LITTLE

(ASI_PHYS_USE_EC_L)

— RW 2,5 Physical address, external cache-

able only, little endian

6.10

1D16 ASI_PHYS_BYPASS_EC_WITH_EBIT_LI

TTLE

(ASI_PHYS_BYPASS_EC_WITH_EBIT_L)

— RW 2 Physical address, non-cacheable,

with side-effect, little endian

6.10

2416 ASI_NUCLEUS_QUAD_LDD

(ASI_NUCLEUS_QUAD_LDD)

— R 1,3 Cacheable, 128-bit atomic LDDA 13.6.3

2C16 ASI_NUCLEUS_QUAD_LDD_LITTLE

(ASI_NUCLEUS_QUAD_LDD_L)

— R 1,3 Cacheable, 128-bit atomic LDDA,

little endian

13.6.3

4516 ASI_LSU_CONTROL_REG

(ASI_LSU_CONTROL_REG)

016 RW Load/store unit control register A.6

4616 ASI_DCACHE_DATA

(ASI_DCACHE_DATA)

— RW D-Cache data RAM diagnostics

access

A.8.1

4716 ASI_DCACHE_TAG

(ASI_DCACHE_TAG)

— RW D-Cache tag/valid RAM diag-

nostics access

A.8.2

4816 ASI_INTR_DISPATCH_STATUS

(ASI_INTR_DISPATCH_STATUS)

016 R1 Interrupt vector dispatch status 9.3.3

4916 ASI_INTR_RECEIVE

(ASI_INTR_RECEIVE)

016 RW Interrupt vector receive status 9.3.5

4A16 ASI_UPA_CONFIG_REG

(ASI_UPA_CONFIG_REG)

016 RW UPA configuration register 8.3.3.2

4B16 ASI_ESTATE_ERROR_EN_REG

(ASI_ESTATE_ERROR_EN_REG)

016 RW E-Cache error enable register 11.3.1

4C16 ASI_AFSR (ASI_AFSR) 016 RW Asynchronous fault status regis-

ter

11.3.3

4D16 ASI_AFAR (ASI_AFAR) 016 RW Asynchronous fault address reg-

ister

11.3.2

4E16 ASI_ECACHE_TAG_DATA

(ASI_EC_TAG_DATA)

016 RW E-Cache tag/valid RAM data

diagnostic access

A.9.2

5016 ASI_IMMU (ASI_IMMU) 016 R1 I-MMU Tag Target Register 6.9.2

5016 ASI_IMMU (ASI_IMMU) 1816 RW I-MMU Synchronous Fault Status

Register

6.9.4

5016 ASI_IMMU (ASI_IMMU) 2816 RW I-MMU TSB Register 6.9.5.1

5016 ASI_IMMU (ASI_IMMU) 3016 RW I-MMU TLB Tag Access Register 6.9.7

5116 ASI_IMMU_TSB_8KB_PTR_REG

(ASI_IMMU_TSB_8KB_PTR_REG)

016 R1 I-MMU TSB 8KB Pointer Register 6.9.8

5216 ASI_IMMU_TSB_64KB_PTR_REG

(ASI_IMMU_TSB_64KB_PTR_REG)

016 R1 I-MMU TSB 64KB Pointer Regis-

ter

6.9.8

5416 ASI_ITLB_DATA_IN_REG

(ASI_ITLB_DATA_IN_REG)

016 W1 I-MMU TLB Data In Register 6.9.9
Sun Microelectronics
148

8. Address Spaces, ASIs, ASRs, and Traps
5516 ASI_ITLB_DATA_ACCESS_REG

(ASI_ITLB_DATA_ACCESS_REG)

016..1F816 RW I-MMU TLB Data Access Regis-

ter

6.9.9

5616 ASI_ITLB_TAG_READ_REG

(ASI_ITLB_TAG_READ_REG)

016..1F816 R1 I-MMU TLB Tag Read Register 6.9.9

5716 ASI_IMMU_DEMAP

(ASI_IMMU_DEMAP)

016 W 1 I-MMU TLB demap 6.9.10

5816 ASI_DMMU (ASI_D-MMU) 016 R1 D-MMU Tag Target Register 6.9.2

5816 ASI_DMMU (ASI_DMMU) 816 RW I/D MMU Primary Context Reg-

ister

6.9.3

5816 ASI_DMMU (ASI_DMMU) 1016 RW D-MMU Secondary Context

Register

6.9.3

5816 ASI_DMMU (ASI_DMMU) 1816 RW D-MMU Synch. Fault Status Reg-

ister

6.9.4

5816 ASI_DMMU (ASI_DMMU) 2016 R1 D-MMU Synch. Fault Address

Register

6.9.5

5816 ASI_DMMU (ASI_DMMU) 2816 RW D-MMU TSB Register 6.9.5.1

5816 ASI_DMMU (ASI_DMMU) 3016 RW D-MMU TLB Tag Access Register 6.9.7

5816 ASI_DMMU (ASI_DMMU) 3816 RW D-MMU VA Data Watchpoint

Register

A.5.3

5816 ASI_DMMU (ASI_DMMU) 4016 RW D-MMU PA Data Watchpoint

Register

A.5.4

5916 ASI_DMMU_TSB_8KB_PTR_REG

(ASI_DMMU_TSB_8KB_PTR_REG)

016 R1 D-MMU TSB 8K Pointer Register 6.9.8

5A16 ASI_DMMU_TSB_64KB_PTR_REG

(ASI_DMMU_TSB_64KB_PTR_REG)

016 R1 D-MMU TSB 64K Pointer Regis-

ter

6.9.8

5B16 ASI_DMMU_TSB_DIRECT_PTR_REG

(ASI_DMMU_TSB_DIRECT_PTR_REG)

016 R1 D-MMU TSB Direct Pointer Reg-

ister

6.9.8

5C16 ASI_DTLB_DATA_IN_REG

(ASI_DTLB_DATA_IN_REG)

016 W1 D-MMU TLB Data In Register 6.9.9

5D16 ASI_DTLB_DATA_ACCESS_REG

(ASI_DTLB_DATA_ACCESS_REG)

016..1F816 RW D-MMU TLB Data Access Regis-

ter

6.9.9

5E16 ASI_DTLB_TAG_READ_REG

(ASI_DTLB_TAG_READ_REG)

016..1F816 R1 D-MMU TLB Tag Read Register 6.9.9

5F16 ASI_DMMU_DEMAP

(ASI_DMMU_DEMAP)

016 W 1 DMMU TLB demap 6.9.10

6616 ASI_ICACHE_INSTR

(ASI_IC_INSTR)

— RW3 I-Cache instruction RAM diag-

nostic access

A.7.1

6716 ASI_ICACHE_TAG

(ASI_IC_TAG)

— RW3 I-Cache tag/valid RAM diagnos-

tic access

A.7.2

6E16 ASI_ICACHE_PRE_DECODE

(ASI_IC_PRE_DECODE)

— RW3 I-Cache pre-decode RAM diag-

nostics access

A.7.3

6F16 ASI_ICACHE_NEXT_FIELD

(ASI_IC_NEXT_FIELD)

— RW3 I-Cache next-field RAM diagnos-

tics access

A.7.4

Table 8-2 UltraSPARC Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
Sun Microelectronics
149

UltraSPARC User’s Manual
7016 ASI_BLOCK_AS_IF_USER_PRIMARY

(ASI_BLK_AIUP)

— RW4,6 Primary address space, block

load/store, user privilege

13.6.4

7116 ASI_BLOCK_AS_IF_USER_SECONDAR

Y (ASI_BLK_AIUS)

— RW4,6 Secondary address space, block

load/store, user privilege

13.6.4

7616 ASI_ECACHE_W (ASI_EC_W) <40:39>=1 W1 E-Cache data RAM diagnostic

write access

A.9.1

7616 ASI_ECACHE_W (ASI_EC_W) <40:39>=2 W1 E-Cache tag/valid RAM diag-

nostic write access

A.9.2

7716 ASI_UDBH_ERROR_REG_WRITE

(ASI_UDB_ERROR_W)

016 W1 External UDB Error Register,

write high

11.3.4

7716 ASI_UDBL_ERROR_REG_WRITE

(ASI_UDB_ERROR_W)

1816 W1 External UDB Error Register,

write low

11.3.4

7716 ASI_UDBH_CONTROL_REG_WRITE

(ASI_UDB_CONTROL_W)

2016 W1 External UDB Control Register,

write high

11.4

7716 ASI_UDBL_CONTROL_REG_WRITE

(ASI_UDB_CONTROL_W)

3816 W1 External UDB Control Register,

write low

11.4

7716 ASI_UDB_INTR_W

(ASI_UDB_INTR_W)

<18:14>=

MID,

<13:0>=

7016

W1 Interrupt vector dispatch 9.3.2

7716 ASI_UDB_INTR_W

(ASI_UDB_INTR_W)

4016 W1 Outgoing interrupt vector data

register 0

9.3.1

7716 ASI_UDB_INTR_W

(ASI_UDB_INTR_W)

5016 W1 Outgoing interrupt vector data

register 1

9.3.1

7716 ASI_UDB_INTR_W

(ASI_UDB_INTR_W)

6016 W1 Outgoing interrupt vector data

register 2

9.3.1

7816 ASI_BLOCK_AS_IF_USER_PRIMARY_LI

TTLE

(ASI_BLK_AIUPL)

— RW 4 Primary address space, block

load/store, user privilege, little

endian

13.6.4

7916 ASI_BLOCK_AS_IF_USER_SECONDAR

Y_LITTLE

(ASI_BLK_AIUSL)

— RW4 Secondary address space, block

load/store, user privilege, little

endian

13.6.4

7E16 ASI_ECACHE_R (ASI_EC_R) <40:39>=1 R1 E-Cache data RAM diagnostic

read access

A.8.1

7E16 ASI_ECACHE_R (ASI_EC_R) <40:39>=2 R1 E-Cache tag/valid RAM diag-

nostic read access

A.8.2

7F16 ASI_UDBH_ERROR_REG_READ

(ASI_UDBH_ERROR_R)

016 R1 External UDB Error Register,

read high

11.3.4

7F16 ASI_UDBL_ERROR_REG_READ

(ASI_UDBL_ERROR_R)

1816 R1 External UDB Error Register,

read low

11.3.4

7F16 ASI_UDBH_CONTROL_REG_READ

(ASI_UDBH_CONTROL_R)

2016 R1 External UDB Control Register,

read high

11.4

7F16 ASI_UDBL_CONTROL_REG_READ

(ASI_UDBL_CONTROL_R)

3816 R1 External UDB Control Register,

read low

11.4

Table 8-2 UltraSPARC Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
Sun Microelectronics
150

8. Address Spaces, ASIs, ASRs, and Traps
7F16 ASI_UDB_INTR_R 4016 R1 Incoming interrupt vector data

register 0

9.3.1

7F16 ASI_UDB_INTR_R 5016 R1 Incoming interrupt vector data

register 1

9.3.1

7F16 ASI_UDB_INTR_R 6016 R1 Incoming interrupt vector data

register 2

9.3.1

C016 ASI_PST8_PRIMARY

(ASI_PST8_P)

— W1,4 Primary address space, 8 8-bit

partial store

13.6.1

C116 ASI_PST8_SECONDARY

(ASI_PST8_S)

— W1,4 Secondary address space, 8 8-bit

partial store

13.6.1

C216 ASI_PST16_PRIMARY

(ASI_PSY16_P)

— W1,4 Primary address space,4 16-bit

partial store

13.6.1

C316 ASI_PST16_SECONDARY

(ASI_PST16_S)

— W1,4 Secondary address space,4 16-bit

partial store

13.6.1

C416 ASI_PST32_PRIMARY

(ASI_PST32_P)

— W1,4 Primary address space, 2 32-bit

partial store

13.6.1

C516 ASI_PST32_SECONDARY

(ASI_PST32_S)

— W1,4 Secondary address space, 2 32-bit

partial store

13.6.1

C816 ASI_PST8_PRIMARY_LITTLE

(ASI_PST8_PL)

— W1,4 Primary address space, 8 8-bit

partial store, little endian

13.6.1

C916 ASI_PST8_SECONDARY_LITTLE

(ASI_PST8_SL)

— W1,4 Secondary address space, 8 8-bit

partial store, little endian

13.6.1

CA16 ASI_PST16_PRIMARY_LITTLE

(ASI_PST16_PL)

— W1,4 Primary address space,4 16-bit

partial store, little endian

13.6.1

CB16 ASI_PST16_SECONDARY_LITTLE

(ASI_PST16_SL)

— W1,4 Secondary address space,4 16-bit

partial store, little endian

13.6.1

CC16 ASI_PST32_PRIMARY_LITTLE

(ASI_PST32_PL)

— W1,4 Primary address space, 2 32-bit

partial store, little endian

13.6.1

CD16 ASI_PST32_SECONDARY_LITTLE

(ASI_PST32_SL)

— W 1,4 Secondary address space, 2 32-bit

partial store, little endian

13.6.1

D016 ASI_FL8_PRIMARY

(ASI_FL8_P)

— RW 4 Primary address space, one 8-bit

floating point load/store

13.6.2

D116 ASI_FL8_SECONDARY

(ASI_FL8_S)

— RW 4 Secondary address space, one 8-

bit floating point load/store

13.6.2

D216 ASI_FL16_PRIMARY

(ASI_Fl16_P)

— RW 4 Primary address space, one 16-bit

floating point load/store

13.6.2

D316 ASI_FL16_SECONDARY

(ASI_FL16_S)

— RW 4 Secondary address space, one 16-

bit floating point load/store

13.6.2

D816 ASI_FL8_PRIMARY_LITTLE

(ASI_FL8_PL)

— RW 4 Primary address space, one 8-bit

floating point load/store, little

endian

13.6.2

D916 ASI_FL8_SECONDARY_LITTLE

(ASI_FL8_SL)

— RW 4 Secondary address space, one 8-

bit floating point load/store, lit-

tle endian

13.6.2

Table 8-2 UltraSPARC Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
Sun Microelectronics
151

UltraSPARC User’s Manual
1. Read-/write-only accesses cause a data_access_exception trap if written/read respectively.

2. 8-/16-/32-/64-bit accesses allowed.

3. LDDA, STDFA or STXA only. Other types of access cause a data_access_exception trap.

4.
LDDFA/STDFA only. Other types of access cause a data_access_exception trap.

5.
Can be used with LDSTUBA, SWAPA, CAS(X)A.

6. Causes a data_access_exception trap if the page being accessed is privileged.

8.3.3 Other UltraSPARC ASI Extensions

8.3.3.1 UPA Port ID Register

The per-processor UPA_PORT_ID Register can be accessed only from the System

Bus as a read-only, noncacheable, slave access at offset 0 of the slave address

space of the processor port.

This register indicates the capability of the CPU module. See Table 10-1, “Ma-

chine State After Reset and in RED_state,” on page 172 for the state of this regis-

ter after reset.

Consult the UltraSPARC-I Data Sheet for the contents of this register’s ID field.

The Bibliography describes how to obtain the data sheet.

DA16 ASI_FL16_PRIMARY_LITTLE

(ASI_FL16_PL)

— RW 4 Primary address space, one 16-bit

floating point load/store, little

endian

13.6.2

DB16 ASI_FL16_SECONDARY_LITTLE

(ASI_FL16_SL)

— RW 4 Secondary address space, one 16-

bit floating point load/store, lit-

tle endian

13.6.2

E016 ASI_BLK_COMMIT_PRIMARY

(ASI_BLK_COMMIT_P)

— W1,4 Primary address space, block

store commit operation

13.6.4

E116 ASI_BLK_COMMIT_SECONDARY

(ASI_BLK_COMMIT_S)

— W1,4 Secondary address space, block

store commit operation

13.6.4

F016 ASI_BLOCK_PRIMARY (ASI_BLK_P) — RW 4 Primary address space, block

load/store

13.6.4

F116 ASI_BLOCK_SECONDARY (ASI_BLK_S) — RW 4 Secondary address space, block

load/store

13.6.4

F816 ASI_BLOCK_PRIMARY_LITTLE

(ASI_BLK_PL)

— RW 4 Primary address space, block

load/store, little endian

13.6.4

F916 ASI_BLOCK_SECONDARY_LITTLE

(ASI_BLK_SL)

— RW 4 Secondary address space, block

load/store, little endian

13.6.4

Table 8-2 UltraSPARC Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
Sun Microelectronics
152

8. Address Spaces, ASIs, ASRs, and Traps
Note: Accesses to the UPA Port ID Register from the local processor return

undefined data. Similar state information can be accessed from the UPA

Configuration Register, described in Section 8.3.3.2, “UPA Configuration

Register,” on page 154.

Figure 8-1 UPA_PORT_ID Register Format

FC16: A one byte field containing the value FC16. This is used by the open boot

PROM to indicate that no Fcode PROM is present for UltraSPARC.

ECC_Valid: Cleared to zero since UltraSPARC can generate ECC when sourcing

data.

ONEREAD: Set to zero. Although UltraSPARC can only support one outstanding

slave read S_REQ transaction at a time, it does not generate a P_RASB

reply.

PINT_RDQ: Set to one, since one incoming P_INT_REQ transaction that may be

outstanding to UltraSPARC at a time.

PREQ_DQ: Set to zero, since incoming slave data writes are not supported by

UltraSPARC.

PREQ_RQ: Set to one, since one incoming P_REQ request may be outstanding at

one time. Two types of incoming requests are supported in UltraSPARC:

snoop and UPA_PORT_ID Register read.

UPACAP<4:0>: This read-only field indicates the UPA capability of this module.

• UPACAP<4>: Set, since UltraSPARC is an interrupt handler

(HandlerSlave). SC forwards P_INT_REQ to this port only if this bit is

set.

• UPACAP<3>: Set, since UltraSPARC is an interrupter

(InterruptMaster). Software assigns this port the target-MID of an

interrupt handler if this bit is set.

• UPACAP<2>: Clear, since UltraSPARC does not use the

UPA_Slave_Int_L signal.

• UPACAP<1>: Set, since UltraSPARC has a cache (CacheMaster).

• UPACAP<0>: Set, since UltraSPARC has a master interface (Master).

ID<15:0>: A 16-bit field for module identification.

FC16

63 56 55 35 34 33 32 31 30 25 24 21 20 16 15 0

— ECC_Valid ONEREAD PINT_RDQ PREQ_DQ PREQ_RQ UPACAP ID
Sun Microelectronics
153

UltraSPARC User’s Manual
• ID<15:10>: Manufacturer identification.

• ID<9:4>: Module type.

• ID<3:0>: Module revision number.

8.3.3.2 UPA Configuration Register

The UPA_CONFIG Register can be accessed at ASI 4A16, VA=0. This is a 64-bit

register; non-64-bit aligned accesses cause a mem_address_not_aligned trap. See

Table 10-1, “Machine State After Reset and in RED_state,” on page 172 for the

state of this register after reset. Figure 8-2 shows the UPA_CONFIG register for

UltraSPARC-I. Figure 8-3 shows the UPA_CONFIG register for UltraSPARC-II.

Figure 8-2 UPA_CONFIG Register (UltraSPARC-I)

Figure 8-3 UPA_CONFIG Register (UltraSPARC-II)

MCAP (UltraSPARC-II): Implementation-dependent module capability bits.

Software can use these bits to determine the processor module speed

capability. These bits are hard-wired or jumpered and brought on chip.

MCAP is a read only field; writes to these bits have no effect.

CLK_MODE (UltraSPARC-II): Encoded ratio of UPA system clock frequency to

processor internal clock frequency. This is a read only field; writes to

these bits have no effect. CLK_MODE is encoded as follows:

CLK_MODE Ratio

00 2 : 1

01 3 : 1

10 4 : 1

11 —

63 29 2130 22 17 16 0

— PCON MID PCAP

32 2133 22 17 16 0353637383943 4263

— PCON MID PCAPELIME$CLK_MODEMCAP
Sun Microelectronics
154

8. Address Spaces, ASIs, ASRs, and Traps
E$ (UltraSPARC-II): E-Cache SRAM mode. This is a read only field; writes to

these bits have no effect. E$ is encoded as follows:

ELIM (UltraSPARC-II): E-Cache limit. Sets the upper limit on the E-Cache size to

be configured. It may be modified during boot-up to reflect a smaller

E-Cache size than is physically present. ELIM is encoded as follows:

PCON: Processor Configuration. Contains subfields that determine the depth of

the system queues for transactions issued by UltraSPARC. The PCON

field is initialized with the minimum values at reset and may be modified

by an ASI store. All values are stored in (N–1) format; that is, the value 0

means 1 transaction.

• WB<10> (UltraSPARC-II): Maximum number of outstanding

Writebacks

• SCIQ0<9:8> (UltraSPARC-II): Maximum number of outstanding

Class 0 transactions.

• BST<7>: Maximum number of outstanding block stores.

• NCST<6:4>: Maximum number of outstanding non-cacheable stores.

• SCIQ1<3:0>: Maximum number of outstanding Class 1 transactions.

Note: After reset and before normal processing begins, software should set the

PCON values to reflect the number of outstanding transactions supported by the

system.

Note: UltraSPARC-II supports only two combinations of values for the WB and

SCIQ0 subfields:

WB=0 and SCIQ0=0, which is identical to UltraSPARC-I’s configuration, or

WB=1 and SCIQ0=2, which is UltraSPARC-II’s “natural” configuration

E$ Mode

0 1–1–1

1 2–2

ELIM Limit

000 16 Mb

001 8 Mb

010 4 Mb

011 2 Mb

100 1 Mb

101 0.5 Mb

110..111 —
Sun Microelectronics
155

UltraSPARC User’s Manual
MID<4:0>: Module (processor) ID register. Identifies the slot in which the

module resides; hardwired to the slot number from the connector pins.

PCAP<16:0>: Processor Capabilities. Shadows the following fields in the

UPA_PORT_ID Register.

• PINT_RDQ<16:15>

• PREQ_DQ<14:9>

• PREQ_RQ<8:5>

• UPACAP<4:0>

8.4 Ancillary State Registers

8.4.1 Overview of ASRs

SPARC-V9 provides up to 32 Ancillary State Registers (ASRs 0 ..31). ASRs 0..6 are

defined by the SPARC-V9 ISA; ASRs 7..15 are reserved for future use by the ar-

chitecture. ASRs 16..31 are available for use by an implementation.

8.4.2 SPARC-V9-Defined ASRs

Table 8-3 defines the SPARC-V9 ASRs that must be supported by a conforming

processor implementation.

1. An attempt to read this register by non-privileged software with NPT = 1 causes a privileged_action trap. The tick

register can only be written with the privileged wrpr instruction.

2. Read-only—an attempt to write this register causes an illegal_instruction trap.

Table 8-3 Mandatory SPARC-V9 ASRs

ASR
Value

ASR Name Access Description Section

0016 Y_REG RW Y register V9

0216 COND_CODE_REG RW Condition code register V9

0316 ASI_REG RW ASI register V9

0416 TICK_REG R1,2 TICK register V9

0516 PC R2 Program Counter V9

0616 FP_STATUS_REG RW Floating-point status register V9
Sun Microelectronics
156

8. Address Spaces, ASIs, ASRs, and Traps
8.4.3 Non-SPARC-V9 ASRs

Non-SPARC-V9 ASRs are listed in Table 8-4 on page 157.

1. Read accesses cause an illegal_instruction trap. Nonprivileged write accesses cause a privileged_opcode trap.
2. Accesses cause an fp_disabled trap if PSTATE.PEF or FPRS.FEF are zero.
3. Nonprivileged accesses cause a privileged_opcode trap.
4. Nonprivileged accesses with PCR.PRIV=0 cause a privileged_action trap.

Suggested Assembly Language Syntax

rd %y, regrd

wr regrs1, reg_or_imm, %y

rd %ccr , regrd

wr regrs1, reg_or_imm, %ccr

rd %asi , regrd

wr regrs1, reg_or_imm, %asi

rd %tick , regrd

rd %pc regrd

rd %fprs , regrd

wr regrs1, reg_or_imm, %fprs

Table 8-4 Non-SPARC-V9 ASRs

ASR
Value

ASR Name/Syntax Access Description Section

1016 PERF_CONTROL_REG RW3 Performance Control Reg (PCR) B.2

1116 PERF_COUNTER RW4 Performance Instrumentation

Counters (PIC)

B.4

1216 DISPATCH_CONTROL_REG RW3 Dispatch Control Register (DCR) A.3

1316 GRAPHIC_STATUS_REG RW2 Graphics Status Register (GSR) 13.4

1416 SET_SOFTINT W1 Set bit(s) in per-processor Soft

Interrupt register

9.4

1516 CLEAR_SOFTINT W1 Clear bit(s) in per-processor Soft

Interrupt register

9.4

1616 SOFTINT_REG RW3 Per-processor Soft Interrupt register 9.4

1716 TICK_CMPR_REG RW3 TICK compare register 14.5.1
Sun Microelectronics
157

UltraSPARC User’s Manual
8.5 Other UltraSPARC Registers

Table 8-5 lists additional sets of 64-bit global registers supported by UltraSPARC.

8.6 Supported Traps

Table 8-6 lists the traps supported by UltraSPARC.

Suggested Assembly Language Syntax

rd %pcr , regrd

wr regrs1,%pcr

rd %pic , regrd

wr regrs1,%pic

rd %gsr , regrd

wr regrs1,%gsr

wr regrs1,%clear_softint

wr regrs1,%set_softint

rd %softint , regrd

wr regrs1,%softint

rd %tick_cmpr , regrd

wr regrs1,%tick_cmpr

rd %dcr , regrd

wr regrs1,%dcr

Table 8-5 Other UltraSPARC Registers

Register Name Access Description Section

INTERRUPT_GLOBAL_REG RW 8 Interrupt handler globals 14.5.9

MMU_GLOBAL_REG RW 8 MMU handler globals 14.5.9

Table 8-6 Traps Supported in UltraSPARC

Exception or Interrupt Request Globals9 TT Priority

Reserved — 00016 n/a

power_on_reset AG 00116 0

watchdog_reset AG 00216 11

externally_initiated_reset AG 00316 11

software_initiated_reset AG 00416 11

RED_state_exception AG 00516 11

instruction_access_exception MG 00816 5

instruction_access_error AG 00A16 3
Sun Microelectronics
158

8. Address Spaces, ASIs, ASRs, and Traps
1. Priority 1 traps are processed in the following order: XIR>WDR>SIR>RED.

2. Fp_exception_ieee_754, fp_exception_other are mutually exclusive with memory access traps such as privileged_action
and VA_watchpoint. Privileged_action has higher priority than VA_watchpoint.

3. Priority 12 traps are processed in the following program order: data_access_exception >
fast_data_access_MMU_miss/fast_data_access_protection > PA_watchpoint > data_access_error.

4. Priority 10 traps are processed in the following order: LDDF/STDF_mem_address_not_aligned >
mem_address_not_aligned trap. LDDF/STDF_mem_address_not_aligned traps are mutually exclusive.

5. Priority 16 traps are processed in the following order: trap instruction > interrupt_vector.

6. When an MMU fault is detected during an instruction access, a fast_instruction_access_MMU_miss trap is generated
instead of an instruction_access_MMU_miss trap.

7. A fast_data_access_MMU_miss trap is generated instead of a data_access_MMU_miss trap.

8. A fast_data_access_protection trap is generated instead of a data_access_protection trap.

9. AG = alternate globals, MG = MMU globals, IG = interrupt globals

illegal_instruction AG 01016 710

privileged_opcode AG 01116 6

fp_disabled AG 02016 8

fp_exception_ieee_754 AG 02116 112

fp_exception_other AG 02216 112

tag_overflow AG 02316 14

clean_window AG 02416..02716 10

division_by_zero AG 02816 15

data_access_exception MG 03016 123

data_access_error AG 03216 123

mem_address_not_aligned AG 03416 104, 10

LDDF_mem_address_not_aligned AG 03516 104

STDF_mem_address_not_aligned AG 03616 104

privileged_action AG 03716 112

interrupt_level_n (n=1..15) AG 04116..04F16 32–n

interrupt_vector IG 06016 165

PA_watchpoint AG 06116 125

VA_watchpoint AG 06216 112

corrected_ECC_error AG 06316 33

fast_instruction_access_MMU_miss MG 06416..06716 2 6

fast_data_access_MMU_miss MG 06816..06B16 123,7

fast_data_access_protection MG 06C16..06F16 123,8

spill_n_normal (n=0..7) AG 08016..09F16 9

spill_n_other (n=0..7) AG 0A016..0BF16 9

fill_n_normal (n=0..7) AG 0C016..0DF16 9

fill_n_other (n=0..7) AG 0E016..0FF16 9

trap_instruction AG 10016..17F16 165

Table 8-6 Traps Supported in UltraSPARC (Continued)

Exception or Interrupt Request Globals9 TT Priority
Sun Microelectronics
159

UltraSPARC User’s Manual
10. Some ASIs must be used with specific types of loads and stores; for example, block ASIs can be used only with
LDDFA/STDFA. When these ASIs are used with incorrect opcodes, they do not take mem_address_not_aligned or
illegal_instruction traps for memory and register alignment required by the ASI. For example, block ASIs require
64-byte alignment, but an LDFA opcode with a block ASI checks only for 4-byte alignment.
Sun Microelectronics
160

Interrupt Handling 9
9.1 Interrupt Vectors

Processors and I/O devices can interrupt a selected processor by assembling and

sending an interrupt packet consisting of three 64-bit words of interrupt data.

The contents of this data are defined by software convention. This allows hard-

ware interrupts and cross calls to have the same hardware mechanism for inter-

rupt delivery and to share a common software interface for processing. The

processor can post interrupts to itself at any level by writing to the SOFTINT

Register.

Note: Separate sets of dispatch (outgoing) and receive (incoming) interrupt data

registers allow simultaneous interrupt dispatching and receiving.

9.1.1 Interrupt Vector Dispatch

To dispatch an interrupt or cross call, a processor or I/O device first writes to the

Outgoing Interrupt Vector Data Registers according to an established software

convention described below. A subsequent write to the Interrupt Vector Dispatch

Register (described in Section 9.3.2, “Interrupt Vector Dispatch”) triggers the in-

terrupt delivery. The status of the interrupt dispatch can be read by polling the

ASI_INTR_DISPATCH_STATUS’s BUSY and NACK bits. A MEMBAR #Sync
should be used before polling begins to ensure that earlier stores are completed.

If both NACK and BUSY are cleared, the interrupt has been successfully deliv-

ered to the target processor. With the NACK bit cleared and BUSY bit set, the in-

terrupt delivery is pending. Finally, if the delivery cannot be completed (if it is

rejected by the target processor), the NACK bit is set. The pseudo-code sequence

in Code Example 9-1 on page 162 sends an interrupt.
Sun Microelectronics
161

UltraSPARC User’s Manual
Note: The processor may not send an interrupt vector to itself. This will cause

undefined interrupt vector data to be returned.

Code Example 9-1 Code Sequence For Interrupt Dispatch

Read state of ASI_INTR_DISPATCH_STATUS; Error if BUSY

<no pending interrupt dispatch packet>

Repeat

Begin atomic sequence (PSTATE.IE ← 0)

Store to IV data reg 0 at ASI_UDB_INTR_W, VA=0x40 (optional)

Store to IV data reg 1 at ASI_UDB_INTR_W, VA=0x50 (optional)

Store to IV data reg 2 at ASI_UDB_INTR_W, VA=0x60 (optional)

Store to IV dispatch at ASI_UDB_INTR_W, VA<63:19>=0,

 VA<18:14>=MID, VA<13:0>=0x70 initiates interrupt delivery

MEMBAR #Sync (wait for stores to finish)

Poll state of ASI_INTR_DISPATCH_STATUS (Busy, NACK)

Loop if BUSY

End atomic sequence (PSTATE.IE ← 1)

DONE if !NACK

(Retry after random delay if NACKED)

Until DONE

Note: In order to avoid deadlocks, interrupts must be enabled for some period

before retrying the atomic sequence. Alternatively, the atomic sequence can be

implemented using locks without disabling interrupts.

9.1.2 Interrupt Vector Receive

When an interrupt is received, all three interrupt data registers are updated, re-

gardless of which are being used by software. This is done along with the setting

of the BUSY bit in the ASI_INTR_RECEIVE register. At this point, the processor

inhibits further interrupt packets from the system bus. If interrupts are enabled

(PSTATE.IE=1), an interrupt_vector trap (implementation-dependent trap type 6016)

is generated. Software reads the ASI_INTR_RECEIVE register and incoming in-

terrupt data registers to determine the entry point of the appropriate trap han-
Sun Microelectronics
162

9. Interrupt Handling
dler. All of the external interrupt packets are processed at the highest interrupt

priority level; they are then re-prioritized as lower priority interrupts in the soft-

ware handler. The following pseudo-code sequence illustrates interrupt receive

handling.

Code Example 9-2 Code Sequence for an Interrupt Receive

Read state of ASI_INTR_RECEIVE; Error if !BUSY

Read from IV data reg 0 at ASI_UDB_INTR_R, VA=0x40 (optional)

Read from IV data reg 1 at ASI_UDB_INTR_R, VA=0x50 (optional)

Read from IV data reg 2 at ASI_UDB_INTR_R, VA=0x60 (optional)

Determine the appropriate handler

Handle interrupt or Re-prioritize this trap and

set the SoftInt register

Store zero to ASI_INTR_RECEIVE to clear the BUSY bit

9.2 Interrupt Global Registers

In order to expedite interrupt processing, a separate set of global registers is im-

plemented in UltraSPARC. As described in Section 9.1.2, “Interrupt Vector Re-

ceive,” on page 162, the processor takes an implementation-dependent

interrupt_vector trap after receiving an interrupt packet. Software uses a number of

scratch registers while determining the appropriate handler and constructing the

interrupt state.

UltraSPARC provides a separate set of eight Interrupt Global Registers (IG) that

replace the eight programmer-visible global registers during interrupt processing.

When an interrupt_vector trap is taken, the hardware selects the interrupt global

registers by setting the PSTATE.IG field. The PSTATE extension is described in

Section 14.5.9, “PSTATE Extensions: Trap Globals,” on page 251. The previous

value of PSTATE is restored from the trap stack by a DONE or RETRY instruction

on exit from the interrupt handler.

9.3 Interrupt ASI Registers

Note: Generally, a MEMBAR #Sync is needed after a store to an interrupt ASI

registers. See Section 5.3.8, “Instruction Prefetch to Side-Effect Locations,” on

page 38.
Sun Microelectronics
163

UltraSPARC User’s Manual
9.3.1 Outgoing Interrupt Vector Data<2:0>

Name: Outgoing Interrupt Vector Data Registers (Privileged)

ASI_UDB_INTR_W (data 0): ASI=7716, VA<63:0>=4016

ASI_UDB_INTR_W (data 1): ASI=7716, VA<63:0>=5016

ASI_UDB_INTR_W (data 2): ASI=7716, VA<63:0>=6016

Data: Interrupt data.

A write to these registers modifies the out-going interrupt dispatch data registers.

Non-privileged access to this register causes a privileged_action trap.

9.3.2 Interrupt Vector Dispatch

Name: ASI_UDB_INTR_W (interrupt dispatch) (Privileged, write-only)

ASI: 7716, VA<63:19>=0, VA<18:14>= target MID, VA<13:0>=7016

A write to this ASI triggers an interrupt vector dispatch to the target CPU resid-

ing at slot MID (Module ID) along with the contents of the three Interrupt Vector

Data Registers.

A read from this ASI causes a data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

9.3.3 Interrupt Vector Dispatch Status Register

Name: ASI_INTR_DISPATCH_STATUS (Privileged, read-only)

ASI: 4816, VA<63:0>=0

Table 9-1 Outgoing Interrupt Vector Data Register Format

Bits Field Use RW

<63:0> Data Data W

Table 9-2 Interrupt Dispatch Status Register Format

Bits Field Use RW

<63:2> Reserved — R

<1> NACK Set if interrupt dispatch has failed R

<0> BUSY Set when there is an outstanding dispatch R
Sun Microelectronics
164

9. Interrupt Handling
NACK: Cleared at the start of every interrupt dispatch attempt; set when a

dispatch has failed.

BUSY: Set if there is an outstanding dispatch.

The status of the outgoing interrupt can be read from

ASI_INTR_DISPATCH_STATUS.

Writes to this ASI cause a data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

9.3.4 Incoming Interrupt Vector Data<2:0>

Name: Incoming Interrupt Vector Data Registers (Privileged)

ASI_UDB_INTR_R (data 0): ASI=7F16, VA<63:0>=4016

ASI_UDB_INTR_R (data 1): ASI=7F16, VA<63:0>=5016

ASI_UDB_INTR_R (data 2): ASI=7F16, VA<63:0>=6016

Data: Interrupt data.

A read from these registers returns incoming interrupt information from the in-

coming interrupt receive data registers.

Non-privileged access to this register causes a privileged_action trap

9.3.5 Interrupt Vector Receive

Name: ASI_INTR_RECEIVE (Privileged)

ASI: 4916, VA<63:0>=0

Table 9-3 Incoming Interrupt Vector Data Register Format

Bits Field Use RW

<63:0> Data Data R
Sun Microelectronics
165

UltraSPARC User’s Manual
BUSY: This bit is set when an interrupt vector is received.

MID<4:0>: Module ID of interrupter.

Note: The BUSY bit must be cleared by software writing zero.

The status of an incoming interrupt can be read from ASI_INTR_RECEIVE. The

BUSY bit is cleared by writing a zero to this register.

Non-privileged access to this register causes a privileged_action trap.

9.4 Software Interrupt (SOFTINT) Register
In order to schedule interrupt vectors for processing at a later time, each proces-

sor can send itself signals by setting bits in the SOFTINT Register.

SOFTINT: When set, bits<15:1> cause interrupts at levels IRL<15:1> respectively.

TICK_INT: When TICK_CMPR’s INT_DIS field is cleared (that is, the TICK

interrupt is enabled) and the 63-bit TICK_Compare Register’s

TICK_CMPR field matches the TICK Register’s counter field, the

TICK_INT field is set and a software interrupt is generated. See also

Section 14.1.7, “TICK Register,” on page 239 and Section 14.5.1, “Per-

Processor TICK Compare Field of TICK Register,” on page 249.

The SOFTINT register (ASR 1616) is used for communication from (TL > 0) Nucle-

us code to (T=0) kernel code. Non privileged accesses to this register will cause a

privileged_opcode trap. Interrupt packets and other service requests can be sched-

uled in queues or mailboxes in memory by the nucleus, which then sets SOFT-

INT<n> to cause an interrupt at level <n>. Setting SOFTINT<n> is done via a

Table 9-4 Interrupt Receive Register Format

Bits Field Use RW

<63:6> Reserved — R

<5> BUSY Set when an interrupt vector is received RW

<4:0> MID<4:0> MID of interrupter R

Table 9-5 SOFTINT Register Format

Bits Field Use RW

<15:1> SOFTINT<15:1> When set, bits<15:1> cause interrupts at levels IRL<15:1>

respectively.

RW

<0> TICK_INT Timer interrupt RW
Sun Microelectronics
166

9. Interrupt Handling
write to the SET_SOFTINT register (ASR 1416) with bit <n> corresponding to the

interrupt level set. Note that the value written to the SET_SOFTINT register is ef-

fectively ORed into the SOFTINT register. This allows the interrupt handler to set

one or more bits in the SOFTINT register with a single instruction. Read accesses

to the SET_SOFTINT register cause an illegal_instruction trap. Non privileged ac-

cesses to this register will cause a privileged_opcode trap. When the nucleus returns,

if (PSTATE.IE=1) and (PIL < n), the processor will receive the highest priority in-

terrupt IRL<n> of the asserted bits in SOFTINT<15:0>.

The processor then takes a trap for the interrupt request, the nucleus will set the

return state to the interrupt handler at that PIL, and return to TL0. In this manner

the nucleus can schedule services at various priorities, and process them accord-

ing to their priority.

When all interrupts scheduled for service at level n have been serviced, the kernel

will write to the CLEAR_SOFTINT register (ASR 1516) with bit n set, in order to

clear that interrupt. Note that the complement of the value written to the

CLEAR_SOFTINT register is effectively ANDed with the SOFTINT register. This

allows the interrupt handler to clear one or more bits in the SOFTINT register

with a single instruction. Read accesses to the CLEAR_SOFTINT register cause an

illegal_instruction trap. Non privileged write accesses to this register will cause a

privileged_opcode trap.

The timer interrupt TICK_INT is equivalent to SOFTINT<14> and has the same

effect.

Note: To avoid a race condition between the kernel clearing an interrupt and

the nucleus setting it, the kernel should reexamine the queue for any valid entries

after clearing the interrupt bit.

Table 9-6 SOFTINT ASRs

ASR
Value

ASR
Name/Syntax

Access Description

1416 SET_SOFTINT W Set bit(s) in Soft Interrupt register

1516 CLEAR_SOFTINT W Clear bit(s) in Soft Interrupt register

1616 SOFTINT_REG RW Per-processor Soft Interrupt register
Sun Microelectronics
167

UltraSPARC User’s Manual
Sun Microelectronics
168

Reset and RED_state 10
10.1 Overview
A reset or trap that sets PSTATE.RED (including a trap in RED_state) will clear

the LSU_Control_Register, including the enable bits for the I-Cache, D-Cache,

I-MMU, D-MMU, and virtual and physical watchpoints.

• The default access in RED_state is noncacheable, so the system must contain

some noncacheable scratch memory.

• The D-Cache, watchpoints, and D-MMU can be enabled by software in

RED_state, but any trap that occurs will disable them again.

• The I-MMU and consequently the I-Cache are always disabled in RED_state.

This overrides the enable bits in the LSU_Control_Register.

• When PSTATE.RED is explicitly set by a software write, there are no side

effects other than disabling the I-MMU. Software must create the appropriate

state itself.

• Trap when TL=MAXTL

• Trap to error_state; immediately receive watchdog reset (WDR).

• A Signal Monitor (SIGM) instruction generates an SIR trap on the local

processor.

• Trap to Software-Initiated Reset

• The External Reset pin generates an XIR trap, which is used for system debug.

• The caches continue to snoop and maintain coherence if DVMA or other

processors are still issuing cacheable accesses.

• Reset priorities from highest to lowest are: POR, XIR, WDR, SIR. See the

following sections for explanations of each reset.
Sun Microelectronics
169

UltraSPARC User’s Manual
Note: Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a

JMPL is not recommended. A noncacheable instruction prefetch may be made to

the JMPL target, which may be in a cacheable memory area. This may result in a

bus error on some systems, which will cause an instruction_access_error trap. The

trap can be masked by setting the NCEEN bit in the ESTATE_ERR_EN Register to

zero, but this will mask all non-correctable error checking. Exiting RED_state

with DONE or RETRY will avoid this problem.

Note: While in RED_state, the Return Address Stack (RAS) is still active, and

instruction fetches following JMPL, RETURN, DONE, or RETRY instructions will

use the address from the top of the RAS. Unless it is re-initialized with a series of

CALLs, the RAS will contain virtual addresses obtained prior to entry into

RED_state. When these are passed through the now disabled I-MMU, invalid

addresses may result. If such accesses cannot be tolerated, software should fill the

RAS with valid addresses using CALL instructions before using a JMPL,

RETURN, DONE, or RETRY instruction in RED_state. Note that the RAS is

cleared after Power-on Reset. Section 16.2.10, “Return Address Stack (RAS),” on

page 272 discusses the RAS in detail. The following code fragment fills the RAS

with valid addresses:

mov %o7,%g1
set 4,%g2

1: call 2f
subcc %g2,1,%g2

2: bnz 1b
mov %g1,%o7

10.1.1 Power-on Reset (POR) and Initialization

A Power-on Reset occurs when the POR pin is activated and stays asserted until

the CPU is within its specified operating range. When the POR pin is active, all

other resets and traps are ignored. Power-on Reset has a trap type of 00116 at

physical address offset 2016. Any pending external transactions are cancelled.

After a Power-on Reset, software must initialize values specified as “unknown” in

Section 10.3, “Machine State after Reset and in RED_state. In particular, the Valid

and LRU bits in the I-Cache (Section A.7, “I-Cache Diagnostic Accesses”), the Val-

id bits in the D-Cache (Section A.8, “D-Cache Diagnostic Accesses”) and all

E-Cache tags and data (Section A.9, “E-Cache Diagnostics Accesses”) must be

cleared before enabling the caches. The iTLB and dTLB also must be initialized as

described in Section 6.7, “MMU Behavior During Reset, MMU Disable, and

RED_state.”
Sun Microelectronics
170

10. Reset and RED_state
Note: Each register must be initialized before it is used. For example, CWP

must be initialized before accessing any windowed registers, since the CWP

register selects which register window to access. Failure to properly initialize

registers or state prior to use may result in unpredicted or incorrect results.

10.1.2 Externally Initiated Reset (XIR)

An Externally Initiated Reset is sent to the CPU via the XIR pin; it causes a

SPARC-V9 XIR, which has a trap type of 00316 at physical address offset 6016. It

has higher priority than all other resets except POR.

10.1.3 Software-Initiated Reset (SIR)

A Software-Initiated Reset is initiated by a SIR instruction within any processor.

This per-processor reset has a trap type of 00416 at physical address offset 8016.

This reset affects only one processor, not the entire system.

10.1.4 Watchdog Reset (WDR) and error_state

A SPARC-V9 processor enters error_state when a trap occurs and TL = MAXTL.

The processor signals itself internally to take a watchdog_reset (WDR) trap at

physical address offset 4016. This reset affects only one processor, rather than the

entire system. CWP updates due to window traps that cause watchdog traps are

the same as the no watchdog trap case.

10.2 RED_state Trap Vector

When a SPARC-V9 processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state_trap_ vector base address

(RSTVaddr); in UltraSPARC this is at virtual address FFFF FFFF F000 000016,

which passes through to physical address 1FF F000 000016.

10.3 Machine State after Reset and in RED_state

Table 10-1 on page 172 shows the machine state created as a result of any reset, or

after entering RED_state.
Sun Microelectronics
171

UltraSPARC User’s Manual
Table 10-1 Machine State After Reset and in RED_state

Name Fields POR WDR XIR SIR RED_state‡

Integer registers Unknown Unchanged

Floating Point registers Unknown Unchanged

RSTV value VA=FFFF FFFF F000 000016, PA=1FF F000 000016

PC
nPC

RSTV | 2016
RSTV | 2416

RSTV | 4016
RSTV | 4416

RSTV | 6016
RSTV | 6416

RSTV | 8016
RSTV | 8416

RSTV | A016
RSTV | A416

PSTATE MM
RED
PEF
AM
PRIV
IE
AG
CLE
TLE
IG
MG

0 (TSO)
1 (RED_state)

1 (FPU on)
0 (Full 64-bit address)
1 (Privileged mode)

0 (Disable interrupts)
1 (Alternate globals selected)

0 (current little endian)
0 (trap little endian)

0 (Interrupt globals not selected)
0 (MMU globals not selected)

TBA<63:15> Unknown Unchanged

Y Unknown Unchanged

PIL Unknown Unchanged

CWP Unknown Unchanged except for register window traps

TT[TL] 1 trap type 3 4 trap type

CCR Unknown Unchanged

ASI Unknown Unchanged

TL MAXTL min(TL+1, MAXTL)

TPC[TL]
TNPC[TL]

Unknown
Unknown

PC
nPC

PC
Unknown

PC
nPC

PC
nPC

TSTATE CCR
ASI
PSTATE
CWP
PC
nPC

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

CCR
ASI

PSTATE
CWP
PC

nPC

TICK NPT
counter

1
Restart at 0

Unchanged
count

Unchanged
Restart at 0

Unchanged
count

CANSAVE Unknown Unchanged

CANRESTORE Unknown Unchanged

OTHERWIN Unknown Unchanged

CLEANWIN Unknown Unchanged

WSTATE OTHER
NORMAL

Unknown
Unknown

Unchanged
Unchanged

VER MANUF
IMPL
MASK
MAXTL
MAXWIN

001716
UltraSPARC-I=001016 UltraSPARC-II=001116

mask-dependent
5
7

FSR all 0 Unchanged

FPRS all Unknown Unchanged
Sun Microelectronics
172

10. Reset and RED_state
Non-SPARC-V9 ASRs

SOFTINT Unknown Unchanged

TICK_COMPARE INT_DIS
TICK_CMPR

1 (off)
Unknown

Unchanged
Unchanged

PERF_CONTROL S1
S0
UT (trace user)
ST (trace system)
PRIV (priv access)

Unknown
Unknown
Unknown
Unknown
Unknown

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

PERF_COUNTER Unknown Unchanged

GSR Unknown Unchanged

Non-SPARC-V9 ASIs

UPA_PORT_ID * FC
ECC_VALID
ONEREAD
PINT_RDQ
PREQ_DQ
PREQ_RQ
UPACAP
ID

FC16
0
1
1
0
1

1B16
TBD

UPA_CONFIG MCAP❶

CLK_MODE❶

E$❶

ELIM❶

WB❶(N–1 Wrtbk)
SCIQ0❶(N–1 class 0)
BST(N–1 blk store)
NCST(N–1 ncache st)
SCIQ1(N–1 Class 1)
MID
PINT_RDQ
PREQ_DQ
PREQ_RQ
UPACAP

impl.-dep.
impl.-dep.
impl.-dep.

0
0
0
0
0
0

slot ID
1
0
1

1B16

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

slot ID
1
0
1

1B16

LSU_CONTROL all 0 (off) 0 (off)

VA_WATCHPOINT Unknown Unchanged

PA_WATCHPOINT Unknown Unchanged

I-& D-MMU_SFSR, ASI
FT
E
CTXT
PRIV
W
OW(overwrite)
FV (SFSR valid)

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

0

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

D-MMU_SFAR Unknown Unchanged

UDBH_ERR,
UDBL_ERR

UE
CE
E_SYNDR

Unknown
Unknown
Unknown

Unchanged
Unchanged
Unchanged

UDBH_CONTROL,
UDBL_CONTROL

FMODE
FCBV

Unknown
Unknown

Unchanged
Unchanged

Table 10-1 Machine State After Reset and in RED_state (Continued)

Name Fields POR WDR XIR SIR RED_state‡
Sun Microelectronics
173

UltraSPARC User’s Manual
* This register is read-only from the system.

‡ Processor states are updated according to this table only when RED_state is entered on a reset or trap. If software
explicitly sets PSTATE.RED to 1, it must create the appropriate states itself.

† If power has been cycled, the state of AFSR is unknown; otherwise, it is unchanged.

❶ This field or register is not present in UltraSPARC-I.

INTR_DISPATCH NACK
BUSY

Unknown
0

Unchanged
Unchanged

INTR_RECEIVE BUSY 0 Unchanged

MID Unknown Unchanged

ESTATE_ERR_EN ISAPEN
(sys addr err)

NCEEN (non CE)
CEEN (CE)

0 (off)

0 (off)
0 (off)

Unchanged

Unchanged
Unchanged

AFAR PA Unknown Unchanged

AFSR all Unchanged† Unchanged

Other UltraSPARC Specific States

Processor and E-Cache tags and data Unknown Unchanged

Cache snooping Enabled

Instruction Buffers Empty

Load/Store Buffers, all outstanding
accesses

Empty Unchanged Empty

iTLB, dTLB Mappings
E-bit (side-effect)
NC-bit (noncache-

able)

Unknown
1
1

Unchanged
1
1

RAS all RSTV | 2016 Unchanged

Table 10-1 Machine State After Reset and in RED_state (Continued)

Name Fields POR WDR XIR SIR RED_state‡
Sun Microelectronics
174

Error Handling 11
11.1 Overview

UltraSPARC provides error checking for all memory access paths between the

CPU, E-Cache, UltraSPARC Data Buffer (UDB), and system bus. Errors are re-

ported as system fatal errors, deferred traps, or disrupting traps. System fatal er-

rors are reported when the system must be reset before continuing. Deferred

traps are reported for non-recoverable failures requiring immediate attention, but

not system reset. Disrupting traps are reported for errors that may need logging,

but do not otherwise affect processor execution.

Error information is logged in the Asynchronous Fault Address Register, Asyn-

chronous Fault Status Register and the UDB Error Register (see Section 11.3.3,

“Asynchronous Fault Address Register,” on page 182, Section 11.3.2, “Asynchro-

nous Fault Status Register,” on page 180, and Section 11.3.4, “UltraSPARC Data

Buffer (UDB) Error Register,” on page 184). Errors are logged even if their corre-

sponding traps are disabled.

11.1.1 System Fatal Errors

When an E-Cache tag parity or system address parity error occurs, system coher-

ency has been lost and the system should be reset. When these errors occur and

the corresponding error trap is enabled in the E-Cache Error Enable Register (see

Section 11.3.1, “E-Cache Error Enable Register,” on page 179), a P_REPLY of type

P_FERR is generated to the UPA. The system should generate a Power-on Reset

to all processors.
Sun Microelectronics
175

UltraSPARC User’s Manual
Since the AFSR is not reset by power on reset, error logging information is pre-

served. Software can examine system registers to determine that reset was due to

a P_FERR, and which node generated it. The appropriate AFSR can be read to de-

termine the cause of the P_FERR. During a real power on (indicated by the reset

registers), software should clear AFSR to avoid false errors.

11.1.2 Deferred Errors

Deferred errors may corrupt the processor state, and are normally unrecoverable.

Such errors lead to termination of the currently executing process or result in a

system reset if system state has been corrupted. Error logging information allows

software to determine if system state has been corrupted.

A MEMBAR #Sync instruction provides an error barrier for deferred errors. It

ensures that deferred errors from earlier accesses will not be reported after the

membar. A MEMBAR #Sync should be used during context switching to provide

error isolation between processes.

Note: After a deferred trap, the contents of TPC and TNPC are undefined

(except for the special peek sequence described below). Generally, they do not
contain the oldest non-executed instruction and its next PC. As a result, execution

cannot normally be resumed from the point that the trap is taken. Instruction

access errors are reported before executing the instruction that caused the error,

but TPC does not necessarily point to the corrupted instruction. Errors due to

fetching user code after a DONE/RETRY are always reported after the DONE or

RETRY. This guarantees that system code will not be aborted by a user mode

instruction access.

When a deferred error occurs and the corresponding error trap is enabled in the

E-Cache Error Enable Register (see Section 11.3.1, “E-Cache Error Enable Regis-

ter,” on page 179), an instruction_access_error or data_access_error trap is generated.

Deferred errors include:

• Data parity error during access from E-Cache or UDB, excluding writeback or

copyback.

• Uncorrectable ECC error in memory access or interrupt vector. Uncorrectable

ECC errors on cache fills will be reported for any ECC error in the cache block,

not just the referenced word.

• Time-out or bus error during a read access from the system bus. Intentional

peeks and pokes to test presence and operation of devices are recoverable only

if performed as follows. The access should be preceded and followed by

MEMBAR #Sync instructions. The destination register of the access may be
Sun Microelectronics
176

11. Error Handling
destroyed, but no other state will be corrupted. If TPC is pointing to the

MEMBAR #Sync following the access, then the data_access_error trap handler

knows that a recoverable error has occurred and resumes execution after

setting a status flag. The trap handler must set TNPC to TPC + 4 before

resuming, because the contents of TNPC are otherwise undefined.

When a deferred error occurs, trap handler execution is delayed until all out-

standing accesses are completed. This delay avoids entering RED_state due to

multiple errors. Any subsequent errors detected during this waiting period will

be properly logged. Errors that occur after the trap handler begins will be due to

an access from inside the trap handler. The instruction and data caches are dis-

abled by clearing the IC and DC bits in the LSU_Control_Register. This is because

corrupted data may be placed in the cache if the access was cacheable. The caches

must be reenabled by software after flushing to remove the corrupted data. In

case of an instruction error, the instruction returned to the CPU is marked for ter-

mination (to be aborted). This means that a bad instruction will not create pro-

grammer-visible side-effects.

The following is a possible sequence for handling deferred errors. Within the trap

handler,

1. Log the error(s).

2. Reset the error logging bits in AFSR and UDB error registers if needed.

Perform a MEMBAR #Sync to complete internal ASI stores.

3. If AFSR.PRIV is set and not performing an intentional peek/poke, panic;

otherwise, try to continue.

4. Displacement flush the entire E-Cache. This will remove corrupted data

from I-, D-, and E-Caches. This step is not necessary for known non-

cacheable accesses.

5. Reenable I- and D-Caches by setting the IC and DC bits of the

LSU_Control_Register. Perform a MEMBAR #Sync to complete internal

ASI stores.

6. Abort the current process.

7. If uncorrectable ECC error, and no other processes share the data, perform

a block store to the block address in AFAR to reset ECC. Perform a

MEMBAR #Sync to complete the block store.

8. Resume execution.
Sun Microelectronics
177

UltraSPARC User’s Manual
11.1.3 Disrupting Errors

Disrupting errors are due to Single-Bit ECC Errors (which are corrected by the

hardware) and E-Cache data parity errors during write back. Disrupting errors

should be handled by logging the error and resuming execution.

Recoverable ECC errors result from detection of a single-bit ECC error during a

system transaction. Memory read errors are logged in the Asynchronous Fault

Status Register (and possibly Asynchronous Fault Address Register). If the

Correctable_Error (CEEN) trap is enabled in the E-Cache Error Enable Register, a

corrected_ECC_error trap is generated. This is trap type TT=6316 and priority 33.

E-Cache data parity errors are discussed in Section 11.2.3, “E-Cache Data Parity

Error,” on page 178. An E-Cache data parity error during writeback is recoverable

because the processor is not reading the affected data. As a result, UltraSPARC

will take a disrupting data_access_error trap with priority 33 instead of a deferred

trap. This avoids panics when the system displaces corrupted user data from the

cache.

Note: To prevent multiple traps from the same error, software should not

reenable interrupts until after the disrupting error status bit in AFSR is cleared.

11.2 Memory Errors

11.2.1 Module Parity Errors

Byte parity is generated and checked for all transfers between the UltraSPARC

and its external E-Cache and system data path. Both address tag and data are

protected.

11.2.2 E-Cache Tag Parity Error

Tag parity errors from internal or snoop transactions will cause a system fatal er-

ror as described in Section 11.1.1, “System Fatal Errors,” on page 175.

11.2.3 E-Cache Data Parity Error

An E-Cache data parity error detected during an instruction access causes an

instruction_access_error deferred trap. An E-Cache parity error detected during a

data read access causes a data_access_error deferred trap. When multiple errors

occur, the trap type corresponds to the first detected error.
Sun Microelectronics
178

11. Error Handling
If an E-Cache data parity error occurs while snooping, a bad ECC error is gener-

ated and sent to the requester. This causes an instruction_access_error or

data_access_error trap at the master that requested the data. The slave processor

logs error information that can be read by the master during error handling. The

processor being snooped is not interrupted by this error condition.

If an E-Cache data parity error occurs during a write-back, uncorrectable ECC is

generated and sent to memory to prevent further use of the corrupted data. The

error information is logged in the AFSR and a disrupting data_access_error trap is

generated. Software should log the writeback error so that a subsequent uncor-

rectable ECC error can be correlated back to the cache parity error.

11.2.4 System ECC Error

UltraSPARC supports ECC generation and checking for all accesses to and from

the system bus. Correctable errors are fixed and the data transfer continues. Un-

correctable errors have bad parity forced before installing in the E-Cache. This

prevents using the bad data, or having the bad data written back to memory with

good ECC bits. Uncorrectable ECC errors on cache fills will be reported for any

ECC error in the cache block, not just the referenced word.

An Uncorrectable error detected during an instruction access causes an

instruction_access_error deferred trap. An uncorrectable error detected during a

data access causes a data_access_error deferred trap. When multiple errors occur,

the trap type corresponds to the first detected error.

An uncorrectable ECC error during an interrupt vector transmission is not report-

ed to the issuing processor. When the interrupt-data is read by the destination

processor, a data_access_error trap is generated.

11.3 Memory Error Registers

Note: MEMBAR #Sync is generally needed after stores to error ASI registers.

See Section 5.3.8, “Instruction Prefetch to Side-Effect Locations,” on page 38.

11.3.1 E-Cache Error Enable Register

Refer to Table 10-1, “Machine State After Reset and in RED_state,” on page 172

for the state of this register after reset.

Name: ASI_ESTATE_ERROR_EN_REG

ASI=4B16, VA<63:0>=016
Sun Microelectronics
179

UltraSPARC User’s Manual
ISAPEN: If set, an address parity error on an incoming UPA transaction causes a

system fatal error; otherwise, the error is logged and ignored.

NCEEN: If set, an uncorrectable error, time-out, bus error, UDB, or E-Cache data

parity error causes an {instruction, data}_access_error trap and an E-Cache

tag parity error causes a system fatal error; otherwise, the error is logged

in the AFSR and ignored.

CEEN: If set, a correctable error detected during a memory read access causes a

correctable_ECC_error disrupting trap; otherwise, the error is logged in the

AFSR and ignored. Correctable ECC errors on interrupt vector

transmission are not logged or reported.

11.3.2 Asynchronous Fault Status Register

The Asynchronous Fault Status Register (AFSR) logs all errors the have occurred

since its fields are last cleared. The AFSR is updated according to the policy de-

scribed in Table 11-6, “Error Detection and Reporting in AFAR and AFSR,” on

page 183.

The AFSR is logically divided into four fields:

• Bit <32>, the accumulating multiple-error (ME) bit, is set when multiple errors

with the same sticky error bit have occurred except for correctable errors.

Multiple errors of different types are indicated by setting more than one of the

sticky error bits.

• Bit <31>, the accumulating privilege-error (PRIV), is set when an error occurs

from an access generated by code executing with PSTATE.PRIV = 1. If this bit

is set, system state has been corrupted.

• Bits <30:20> are sticky error bits that record the most recently detected errors.

These sticky bits accumulate errors that have been detected since the last write

to clear this register.

Table 11-1 E-Cache Error Enable Register Format

Bits Field Use RW

<63:3> Reserved — R

<2> ISAPEN Trap on system address parity error RW

<1> NCEEN Trap on TO, BERR, LDP, ETP, EDP, WP, UE, IVUE RW

<0> CEEN Trap on correctable memory read error RW
Sun Microelectronics
180

11. Error Handling
• Bits <19:16> and <15:0> contain the tag and data parity syndromes

respectively. Syndrome bits are endian-neutral, that is, bit 0 corresponds to

bits<7:0> of the E-Cache data bus (that is, bytes whose least significant four

address bits are F16). The syndrome fields have the status of the first

occurrence of the highest priority error related to that field. If no status bit is

set corresponding to that field, the contents of the syndrome field will be zero.

The AFSR must be cleared by software explicitly; it is not cleared automatically

during a read. Writes to the AFSR sticky bits (<32:20>) with particular bits set

will clear the corresponding bits in the AFSR. Bits associated with disrupting

traps must be cleared before reenabling interrupts to prevent multiple traps for

the same error. Writes to the AFSR sticky bits with particular bits clear will not af-

fect the corresponding bits in the AFSR. If software attempts to clear error bits at

the same time as an error occurs, the clear will be performed before logging the

new error status. The syndrome field is read only and writes to this field are ig-

nored.

Refer to Table 10-1, “Machine State After Reset and in RED_state,” on page 172

for the state of this register after reset.

Name: ASI_ASYNC_FAULT_STATUS

ASI=4C16, VA<63:0>=016

Table 11-2 Asynchronous Fault Status Register

Bits Field Use RW

<63:33> Reserved — R

<32> ME Multiple Error of same type occurred RW

<31> PRIV Privileged code access error(s) has occurred RW

<30> ISAP System Address Parity error on incoming address RW

<29> ETP Parity error in E-Cache Tag SRAM RW

<28> IVUE Interrupt Vector Uncorrectable error RW

<27> TO Time-Out from system bus RW

<26> BERR Bus Error from system Bus RW

<25> LDP Data Parity error from UDB-generated data (noncacheable access or cache fill) RW

<24> CP Copy-out (intervention) Parity error RW

<23> WP Data parity error from E-Cache SRAMs for Write-back (victim) RW

<22> EDP Data parity error from E-Cache SRAMs RW

<21> UE Uncorrectable ECC error (E_SYND in UDB) RW

<20> CE Correctable memory read ECC error (E_SYND in UDB) RW

<19:16> ETS E-Cache Tag parity Syndrome R

<15:0> P_SYND Parity Syndrome R
Sun Microelectronics
181

UltraSPARC User’s Manual
11.3.3 Asynchronous Fault Address Register

This register is valid when one of the Asynchronous Fault Status Register (AFSR)

error status bits that capture address is set (correctable or uncorrectable memory

ECC error, bus time-out or bus error). The address corresponds to the first occur-

rence of the highest priority error in AFSR that captures address (see Section

11.5.1, “AFAR Overwrite Policy,” on page 185). Address capture is reenabled by

clearing all corresponding error bits in AFSR. If software attempts to write to

these bits at the same time as an error that captures address occurs, the error ad-

dress will be stored.

Table 11-3 E-Cache Data Parity Syndrome Bit Orderings

Byte
Address

E- Cache Data
Bus Bits

Syndrome Bit

F16 <7:0> 0

E16 <15:8> 1

D16 <23:16> 2

C16 <31:24> 3

B16 <39:32> 4

A16 <47:40> 5

916 <55:48> 6

816 <63:56> 7

716 <71:64> 8

616 <79:72> 9

516 <87:80> 10

416 <95:88> 11

316 <103:96> 12

216 <111:104> 13

116 <119:112> 14

016 <127:120> 15

Table 11-4 E-Cache Tag Parity Syndrome Bit Orderings

E-Cache Tag
Bus Bits

Syndrome Bit

<7:0> 0

<15:8> 1

<21:16> 2

<24:22> 3
Sun Microelectronics
182

11. Error Handling
Refer to Table 10-1, “Machine State After Reset and in RED_state,” on page 172

for the state of this register after reset.

Name: ASI_ASYNC_FAULT_ADDRESS

ASI=4D16, VA<63:0>=016

PA: Address information for the most recently captured error.

1. No address information captured.

2. Writeback and copyout are also known as victimization and coherent intervention respectively.

3. On copyout, the sender logs the error but does not trap; the requester gets an UE error. Software will cross-call other masters and
check for the origination of the error by checking the CP bit of the other AFSR registers.

4. UltraSPARC’s UDB corrupts the ECC for data with bad parity from UltraSPARC.

5. E_SYND = “ECC syndrome”; P_SYND = “parity syndrome:; ETS = “E-Cache Tag Parity Syndrome.”

6. I = instruction_access_error trap; D = data_access_error trap; C= corrected_ECC_error trap; POR= Power-on Reset trap.

Table 11-5 Asynchronous Fault Address Register

Bits Field Use RW

<63:41> Reserved — R

<40:4> PA<40:4> Physical address of faulting transaction RW

<3:0> Reserved — R

Table 11-6 Error Detection and Reporting in AFAR and AFSR

Error Type PA SYNDROME5 Trap
PRIV

Captured?
Trap Type6 Updated

Status
SW Cache

Flush

Uncorrectable ECC Y E_SYND Deferred Y I, D UE Yes if

cacheable

Correctable ECC Y E_SYND Disrupting N C CE No

E-Cache parity: SF LD/Fetch N1 P_SYND Deferred Y I, D EDP Yes

E-Cache parity:2 UDB writeback N1 P_SYND Disrupting N D WP No

E-Cache parity:3 UDB copyout N1 P_SYND —3 N — CP No

UltraSPARC → UDB4 no logging or report

UDB → SF N1 P_SYND Deferred Y I, D LDP Yes if

cacheable

Bus Error Y — Deferred Y I, D BERR Yes if

cacheable

Time-out Y — Deferred Y I, D TO Yes if

cacheable

IV with UE N — Deferred Y D IVUE No

Tag parity N ETS fatal error N POR from

system

ETP power on

clear

Incoming SAP N — fatal error N POR from

system

ISAP power on

clear
Sun Microelectronics
183

UltraSPARC User’s Manual
11.3.4 UltraSPARC Data Buffer (UDB) Error Register

For implementation efficiency, the UltraSPARC Data Buffer (UDB) error and con-

trol registers are physically separated into upper half and lower half registers.

Separate ASIs are used for reading (7F16) and writing (7716) the UDB registers.

Software should check the status of each register when an ECC error is reported.

If software attempts to clear these bits at the same time that an error occurs, the

appropriate error bit will be set to avoid losing error information.

Name: ASI_UDBH_ERROR_REG_WRITE

ASI=7716, VA<63:0>=016

Name: ASI_UDBH_ERROR_REG_READ

ASI=7F16, VA<63:0>=016

Name: ASI_UDBL_ERROR_REG_WRITE

ASI=7716, VA<63:0>=1816

Name: ASI_UDBL_ERROR_REG_READ

ASI=7F16, VA<63:0>=1816

E_SYNDR: ECC syndrome for correctable errors from system. In case of multiple

outstanding errors, only the first is recorded.

Bits <9:8> are sticky error bits that record the most recently detected errors. These

bits accumulate errors that have been detected since the last write to clear to this

register. The UDB error registers are not cleared automatically during a read.

Writes to this register with bits eight or nine set will clear the corresponding bits

in the error register. Writes to the error register with particular bits clear will not

affect the corresponding bits in the error register. The syndrome field is read only

and writes to this field are ignored.

Note: A recorded correctable error may be overwritten by an uncorrectable

error.

Table 11-7 UDB Error Register Format

Bits Field Use RW

<63:10> Reserved — R

<9> UE If set, UE has occurred RW

<8> CE If set, CE has occurred RW

<7:0> E_SYNDR ECC syndrome from system R
Sun Microelectronics
184

11. Error Handling
11.4 UltraSPARC Data Buffer (UDB) Control Register
Name: ASI_UDBH_CONTROL_REG_WRITE

ASI=7716, VA<63:0>=2016

Name: ASI_UDBH_CONTROL_REG_READ

ASI=7F16, VA<63:0>=2016

Name: ASI_UDBL_CONTROL_REG_WRITE

ASI=7716, VA<63:0>=3816

Name: ASI_UDBL_CONTROL_REG_READ

ASI=7F16, VA<63:0>=3816

VERSION: 4-bit mask set revision number for the selected UDB chip.

F_MODE: If set, the contents of the FCBV field are sent with the out-going

transaction, instead of the generated ECC.

FCBV: Force check bit vector.

11.5 Overwrite Policy
This section describes the overwrite policy for error bits when multiple errors

conditions have occurred. Errors are captured in the order that they are detected,

not necessarily in program order.

If an error occurs at the same time as error bits are cleared by software, then the

overwrite control will include the effect of the software clear. For example, if ETP

was set (which blocks E-Cache tag syndrome updates) and software clears the

ETP bit at the same time as an E-Cache tag parity error occurs, the E-Cache tag

syndrome will be updated.

11.5.1 AFAR Overwrite Policy

Priority for AFAR updates: UE > CE > {TO, BE}

Table 11-8 UDB Error Register Format

Bits Field Use RW

<63:13> Reserved — R

<12:9> VERSION UDB version number R

<8> F_MODE Force ECC error RW

<7:0> FCBV Force check bit vector RW
Sun Microelectronics
185

UltraSPARC User’s Manual
The physical address of the first error within a class (UE, CE, {TO, BE}) is cap-

tured in the AFAR until the associated error status bit is cleared in AFSR, or an

error from a higher priority class occurs. A CE error overwrites prior TO or BE

errors. A UE error overwrites prior CE, TO and BE errors.

11.5.2 AFSR Parity Syndrome (P_SYND) Overwrite Policy

Parity information for the first occurrence of any error is captured in the P_SYND

field of the AFSR. Error logging is re-enabled by clearing the EDP, CP, WP and

LDP fields. Any set bits in these fields inhibit update to the P_SYND field.

11.5.3 AFSR E-Cache Tag Parity (ETS) Overwrite Policy

Parity information for the first occurrence of any error is captured in the ETS field

of the AFSR register. Error logging in this field can be re-enabled by clearing the

ETP field.

11.5.4 UDB ECC Syndrome (E_SYND) Overwrite Policy

Priority for E_SYND updates: UE > CE

The ECC syndrome of the first error within a class (UE, CE) is captured in the

E_SYND field of the UDB Error Register until the associated error status bit is

cleared in the UDB error register, or an error from a higher priority class occurs.

A UE error overwrites prior CE errors. Note that each slice of the UDB captures

and inhibits independently the updates to its corresponding E_SYND fields.
Sun Microelectronics
186

Section III — UltraSPARC and SPARC-V9
12. Instruction Set Summary ... 189

13. UltraSPARC Extended Instructions .. 195

14. Implementation Dependencies ... 235

15. SPARC-V9 Memory Models .. 255
Sun Microelectronics
187

UltraSPARC User’s Manual
Sun Microelectronics
188

Instruction Set Summary 12
The UltraSPARC CPU implements both the standard SPARC-V9 instruction set

and a number of implementation-dependent extended instructions. Standard

SPARC-V9 instructions are documented in The SPARC Architecture Manual, Ver-
sion 9. UltraSPARC extended instructions are documented in Chapter 13,

“UltraSPARC Extended Instructions.”

Table 12-1 lists the complete UltraSPARC instruction set. A check (✓) in the “Ext”

column indicates that the instruction is an UltraSPARC extension; the absence of

a check indicates a SPARC-V9 core instruction. The “Ref” column lists the section

number that contains the instruction documentation. SPARC-V9 core instructions

are documented in The SPARC Architecture Manual, Version 9; UltraSPARC exten-

sions are documented in this manual.

Note: The first printing of The SPARC Architecture Manual, Version 9 contains

two sections numbered A.31; the subsequent sections in Appendix A are

misnumbered. For convenience, Table 12-1 on page 190 of this manual follows

this incorrect numbering scheme. When The SPARC Architecture Manual, Version 9
is corrected, Table 12-1 will be changed to match the correct numbering.
Sun Microelectronics
189

UltraSPARC User’s Manual
Table 12-1 Complete UltraSPARC Instruction Set

Opcode Description Ext Ref

ADD (ADDcc) Add (and modify condition codes) A.2

ADDC (ADDCcc) Add with carry (and modify condition codes) A.2

ALIGNADDRESS Calculate address for misaligned data access ✓ 13.5.5

ALIGNADDRESSL Calculate address for misaligned data access (little-endian) ✓ 13.5.5

AND (ANDcc) And (and modify condition codes) A.31

ANDN (ANDNcc) And not (and modify condition codes) A.31

ARRAY{8,16,32} 3-D address to blocked byte address conversion ✓ 13.5.10

Bicc Branch on integer condition codes A.6

BLD 64-byte block load ✓ 13.6.4

BPcc Branch on integer condition codes with prediction A.7

BPr Branch on contents of integer register with prediction A.3

BST 64-byte block store ✓ 13.6.4

CALL Call and link A.8

CASA Compare and swap word in alternate space A.9

CASXA Compare and swap doubleword in alternate space A.9

DONE Return from trap A.11

EDGE{8,16,32}{L} Edge boundary processing {little-endian} ✓ 13.5.8

FABS(s,d,q) Floating-point absolute value A.17

FADD(s,d,q) Floating-point add A.12

FALIGNDATA Perform data alignment for misaligned data ✓ 13.5.5

FANDNOT1{s} Negated src1 AND src2 (single precision) ✓ 13.5.6

FANDNOT2{s} src1 AND negated src2 (single precision) ✓ 13.5.6

FAND{s} Logical AND (single precision) 13.5.6

FBPfcc Branch on floating-point condition codes with prediction A.5

FBfcc Branch on floating-point condition codes A.4

FCMP(s,d,q) Floating-point compare A.13

FCMPE(s,d,q) Floating-point compare (exception if unordered) A.13

FCMPEQ{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 = src2 ✓ 13.5.7

FCMPGT{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 > src2 ✓ 13.5.7

FCMPLE{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 <= src2 ✓ 13.5.7

FCMPNE{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 != src2 ✓ 13.5.7

FDIV(s,d,q) Floating-point divide A.18

FdMULq Floating-point multiply double to quad A.18

FEXPAND Four 8-bit to 16-bit expand ✓ 13.5.3

FiTO(s,d,q) Convert integer to floating-point A.16

FLUSH Flush instruction memory A.20

FLUSHW Flush register windows A.21

FMOV(s,d,q) Floating-point move A.17

FMOV(s,d,q)cc Move floating-point register if condition is satisfied A.32

FMOV(s,d,q)r Move floating-point register if integer register contents satisfy condition A.33
Sun Microelectronics
190

12. Instruction Set Summary
FMUL(s,d,q) Floating-point multiply A.18

FMUL8SUx16 Signed upper 8- × 16-bit partitioned product of corresponding components ✓ 13.5.4

FMUL8ULx16 Unsigned lower 8- × 16-bit partitioned product of corresponding components ✓ 13.5.4

FMUL8x16 8- × 16-bit partitioned product of corresponding components ✓ 13.5.4

FMUL8x16AL 8- × 16-bit lower α partitioned product of 4 components ✓ 13.5.4

FMUL8x16AU 8- × 16-bit upper α partitioned product of 4 components ✓ 13.5.4

FMULD8SUx16 Signed upper 8- × 16-bit multiply → 32-bit partitioned product of components ✓ 13.5.4

FMULD8ULx16 Unsigned lower 8- × 16-bit multiply → 32-bit partitioned product of components ✓ 13.5.4

FNAND{s} Logical NAND (single precision) ✓ 13.5.6

FNEG(s,d,q) Floating-point negate ✓ 13.5.6

FNOR{s} Logical NOR (single precision) ✓ 13.5.6

FNOT1{s} Negate (1’s complement) src1 (single precision) ✓ 13.5.6

FNOT2{s} Negate (1’s complement) src2 (single precision) ✓ 13.5.6

FONE{s} One fill(single precision) ✓ 13.5.6

FORNOT1{s} Negated src1 OR src2 (single precision) ✓ 13.5.6

FORNOT2{s} src1 OR negated src2 (single precision) ✓ 13.5.6

FOR{s} Logical OR (single precision) ✓ 13.5.6

FPACKFIX Two 32-bit to 16-bit fixed pack ✓ 13.5.3

FPACK{16,32} Four 16-bit/two 32-bit pixel pack ✓ 13.5.3

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision) ✓ 13.5.2

FPMERGE Two 32-bit pixel to 64-bit pixel merge ✓ 13.5.3

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision) ✓ 13.5.2

FsMULd Floating-point multiply single to double A.18

FSQRT(s,d,q) Floating-point square root A.19

FSRC1{s} Copy src1 (single precision) ✓ 13.5.6

FSRC2{s} Copy src2 (single precision) ✓ 13.5.6

F(s,d,q)TO(s,d,q) Convert between floating-point formats A.15

F(s,d,q)TOi Convert floating point to integer A.14

F(s,d,q)TOx Convert floating point to 64-bit integer A.14

FSUB(s,d,q) Floating-point subtract A.12

FXNOR{s} Logical XNOR (single precision) ✓ 13.5.6

FXOR{s} Logical XOR (single precision) ✓ 13.5.6

FxTO(s,d,q) Convert 64-bit integer to floating-point A.16

FZERO{s} Zero fill(single precision) ✓ 13.5.6

ILLTRAP Illegal instruction A.22

IMPDEP1 Implementation-dependent instruction A.23

IMPDEP2 Implementation-dependent instruction A.23

JMPL Jump and link A.24

LDD Load doubleword A.27

LDDA Load doubleword from alternate space A.28

LDDA 128-bit atomic load ✓ 13.6.3

LDDF Load double floating-point A.25

Table 12-1 Complete UltraSPARC Instruction Set (Continued)

Opcode Description Ext Ref
Sun Microelectronics
191

UltraSPARC User’s Manual
LDDFA Load double floating-point from alternate space A.26

LDDFA Zero-extended 8-/16-bit load to a double precision FP register ✓ 13.6.2

LDF Load floating-point A.25

LDFA Load floating-point from alternate space A.26

LDFSR Load floating-point state register lower A.25

LDQF Load quad floating-point A.25

LDQFA Load quad floating-point from alternate space A.26

LDSB Load signed byte A.27

LDSBA Load signed byte from alternate space A.28

LDSH Load signed halfword A.27

LDSHA Load signed halfword from alternate space A.28

LDSTUB Load-store unsigned byte A.27

LDSTUBA Load-store unsigned byte in alternate space A.28

LDSW Load signed word A.27

LDSWA Load signed word from alternate space A.28

LDUB Load unsigned byte A.27

LDUBA Load unsigned byte from alternate space A.28

LDUH Load unsigned halfword A.27

LDUHA Load unsigned halfword from alternate space A.28

LDUW Load unsigned word A.27

LDUWA Load unsigned word from alternate space A.28

LDX Load extended A.27

LDXA Load extended from alternate space A.28

LDXFSR Load extended floating-point state register A.25

MEMBAR Memory barrier A.31

MOVcc Move integer register if condition is satisfied A.34

MOVr Move integer register on contents of integer register A.35

MULScc Multiply step (and modify condition codes) A.38

MULX Multiply 64-bit integers A.36

NOP No operation A.39

OR (ORcc) Inclusive-or (and modify condition codes) A.31

ORN (ORNcc) Inclusive-or not (and modify condition codes) A.31

PDIST Distance between 8 8-bit components ✓ 13.5.9

POPC Population count A.40

PREFETCH1 Prefetch data A.41

PREFETCHA1 Prefetch data from alternate space A.41

PST Eight 8-bit/4 16-bit/2 32-bit partial stores ✓ 13.6.1

RDASI Read ASI register A.43

RDASR Read ancillary state register A.43

RDCCR Read condition codes register A.43

RDFPRS Read floating-point registers state register A.43

RDPC Read program counter A.43

Table 12-1 Complete UltraSPARC Instruction Set (Continued)

Opcode Description Ext Ref
Sun Microelectronics
192

12. Instruction Set Summary
RDPR Read privileged register A.42

RDTICK Read TICK register A.43

RDY Read Y register A.43

RESTORE Restore caller’s window A.45

RESTORED Window has been restored A.46

RETRY Return from trap and retry A.11

RETURN Return A.44

SAVE Save caller’s window A.45

SAVED Window has been saved A.46

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes) A.10

SDIVX 64-bit signed integer divide A.36

SETHI Set high 22 bits of low word of integer register A.47

SHUTDOWN Power-down support ✓ 13.2

SIR Software-initiated reset A.49

SLL Shift left logical A.31

SLLX Shift left logical, extended A.31

SMUL (SMULcc) Signed integer multiply (and modify condition codes) A.37

SRA Shift right arithmetic A.31

SRAX Shift right arithmetic, extended A.31

SRL Shift right logical A.31

SRLX Shift right logical, extended A.31

STB Store byte A.53

STBA Store byte into alternate space A.54

STBAR Store barrier A.50

STD Store doubleword A.53

STDA Store doubleword into alternate space A.54

STDF Store double floating-point A.51

STDFA Store double floating-point into alternate space A.52

STDFA 8-/16-bit store from a double precision FP register ✓ 13.6.2

STF Store floating-point A.51

STFA Store floating-point into alternate space A.52

STFSR Store floating-point state register A.51

STH Store halfword A.53

STHA Store halfword into alternate space A.54

STQF Store quad floating-point A.51

STQFA Store quad floating-point into alternate space A.52

STW Store word A.53

STWA Store word into alternate space A.54

STX Store extended A.53

STXA Store extended into alternate space A.54

STXFSR Store extended floating-point state register A.51

SUB (SUBcc) Subtract (and modify condition codes) A.55

Table 12-1 Complete UltraSPARC Instruction Set (Continued)

Opcode Description Ext Ref
Sun Microelectronics
193

UltraSPARC User’s Manual
1. UltraSPARC-I does not implement the PREFETCH and PREFETCHA instructions.

SUBC (SUBCcc) Subtract with carry (and modify condition codes) A.55

SWAP Swap integer register with memory A.56

SWAPA Swap integer register with memory in alternate space A.57

TADDcc

(TADDccTV)

Tagged add and modify condition codes (trap on overflow) A.58

TSUBcc

(TSUBccTV)

Tagged subtract and modify condition codes (trap on overflow) A.59

Tcc Trap on integer condition codes A.60

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes) A.10

UDIVX 64-bit unsigned integer divide A.36

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes) A.37

WRASI Write ASI register A.62

WRASR Write ancillary state register A.62

WRCCR Write condition codes register A.62

WRFPRS Write floating-point registers state register A.62

WRPR Write privileged register A.61

WRY Write Y register A.62

XNOR (XNORcc) Exclusive-nor (and modify condition codes) A.31

XOR (XORcc) Exclusive-or (and modify condition codes) A.31

Table 12-1 Complete UltraSPARC Instruction Set (Continued)

Opcode Description Ext Ref
Sun Microelectronics
194

UltraSPARC Extended Instructions 13
13.1 Introduction

UltraSPARC extends the standard SPARC-V9 instruction set with three new

classes of instructions designed to support power-down mode (see Section 13.2,

“SHUTDOWN") enhance graphics functionality (see Section 13.5, “Graphics In-

structions”), and improve the efficiency of memory accesses (see Section 13.6,

“Memory Access Instructions).

13.2 SHUTDOWN

Format (3):

Description:

The SHUTDOWN instruction waits for all outstanding transactions to be com-

pleted. This leaves the system and external cache interface in a clean state. It then

sends a shutdown signal to the internal clock generator. The internal clock gener-

opcode opf operation

SHUTDOWN 0 1000 0000 Shutdown to enter power down mode

Suggested Assembly Language Syntax

shutdown

10 11 0110 —— —

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
195

UltraSPARC User’s Manual
ator asserts the internal reset for 19 clocks to force the chip into a safe state, and

then stops the internal clock and the PLL. The internal clock is left in the high

state. All external signals should be left in the normal reset state.

An external power-down signal (EPD) is activated by the clock generator at the

same time as the internal reset. This signal is used to shut down the UDB chips

and to put the E-Cache RAMs in standby mode. The UDB chips should follow a

similar sequence, generating an internal reset and then stopping the clock and

PLL. If desired, the external clock can be stopped after the EPD signal is asserted,

in order to allow reset processing to complete. Consult the UltraSPARC-I Data
Sheet for electrical and timing related specifications. (See the Bibliography for in-

formation about how to obtain the data sheet.)

This is a privileged instruction; an attempt to execute it while in non-privileged

mode causes a privileged_opcode trap.

Traps:

privileged_opcode

Note: Privileged software should save all necessary processor state (for

example, E-Cache flush) before entering power-down mode. SHUTDOWN

should be the last instruction executed before power-down.

13.3 Graphics Data Formats

Graphics instructions are optimized for short integer arithmetic, where the over-

head of converting to and from floating-point is significant. Image components

may be 8 or 16 bits; intermediate results are 16 or 32 bits.

13.3.1 8-Bit Format

Pixels consist of four unsigned 8-bit integers contained in a 32-bit word. Typical-

ly, they represent intensity values for an image (e.g. α, B, G, R). UltraSPARC sup-

ports

• Band interleaved images, with the various color components of a point in the

image stored together, and

• Band sequential images, with all of the values for one color component stored

together.
Sun Microelectronics
196

13. UltraSPARC Extended Instructions
13.3.2 Fixed Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values con-

tained in a 64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed

point-values contained in a 64-bit word. Fixed data values provide an intermedi-

ate format with enough precision and dynamic range for filtering and simple im-

age computations on pixel values. Conversion from pixel data to fixed data

occurs through pixel multiplication. Conversion from fixed data to pixel data is

done with the pack instructions, which clip and truncate to an 8-bit unsigned val-

ue. Conversion from 32-bit fixed to 16-bit fixed is also supported with the

FPACKFIX instruction. Rounding can be performed by adding 1 to the round bit

position. Complex calculations needing more dynamic range or precision should

be performed using floating-point data.

Figure 13-1 shows the graphics data formats.

Figure 13-1 Graphics Data Formats

Note: Sun frame buffer pixel component ordering is: α, B, G, R.

13.4 Graphics Status Register (GSR)

The GSR is accessed with implementation-dependent RDASR and WRASR in-

structions using ASR 1316.

opcode op3 reg field operation

RDASR 10 1000 rs1 = 19 Read GSR

WRASR 11 0000 rd = 19 Write GSR

Fixed32

31 23 15 7

Pixel

Fixed16 int frac int frac int frac int frac

int frac int frac

024 16 8

63 47 31 15 048 32 16

63 31 032
Sun Microelectronics
197

UltraSPARC User’s Manual
RDASR format:

WRASR format:

Accesses to this register cause an fp_disabled trap if either PSTATE.PEF or

FPRS.FEF is zero.

Figure 13-2 shows the format of the GSR.

Figure 13-2 GSR Format (ASR 1016)

scale_factor: Shift count in the range 0 ..15, used by PACK instructions for pixel

formatting.

alignaddr_offset: Least significant three bits of the address computed by the last

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction. See Section 13.5.5,

“Alignment Instructions,” on page 214.

Traps:

fp_disabled

13.5 Graphics Instructions

All instruction operands are in floating-point registers, unless otherwise speci-

fied. This provides the maximum number of registers (32 double-precision) and

the maximum instruction parallelism (for example, UltraSPARC is four scalar for

Suggested Assembly Language Syntax

rd %gsr, reg rd

wr reg rs1 , reg_or_imm , %gsr

10 op3 —rd rs1

31 141924 18 13 02530 29

i=0

12

10 op3 simm13rd rs1

31 141924 18 13 02530 29 12

i=1

10 op3 —rd rs1 i=0 rs2

5 4

alignaddr_offset

63 02

scale_factor

3

—

67
Sun Microelectronics
198

13. UltraSPARC Extended Instructions
floating-point/graphics code only). Pixel values are stored in single-precision

floating point registers and fixed values are stored in double-precision floating-

point registers, unless otherwise specified.

13.5.1 Opcode Format

The graphics instruction set maps to the opcode space reserved for the Imple-

mentation-Dependent Instruction 1 (IMPDEP1) instructions.

Format (3):

13.5.2 Partitioned Add/Subtract Instructions

Format (3):

opcode opf operation

FPADD16 0 0101 0000 Four 16-bit add

FPADD16 S 0 0101 0001 Two 16-bit add

FPADD32 0 0101 0010 Two 32-bit add

FPADD32S 0 0101 0011 One 32-bit add

FPSUB16 0 0101 0100 Four 16-bit subtract

FPSUB16S 0 0101 0101 Two 16-bit subtract

FPSUB32 0 0101 0110 Two 32-bit subtract

FPSUB32S 0 0101 0111 One 32-bit subtract

Suggested Assembly Language Syntax

fpadd16 freg rs1 , freg rs2 , freg rd

fpadd16s freg rs1 , freg rs2 , freg rd

fpadd32 freg rs1 , freg rs2 , freg rd

fpadd32s freg rs1 , freg rs2 , freg rd

fpsub16 freg rs1 , freg rs2 , freg rd

fpsub16s freg rs1 , freg rs2 , freg rd

fpsub32 freg rs1 , freg rs2 , freg rd

fpsub32s freg rs1 , freg rs2 , freg rd

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
199

UltraSPARC User’s Manual
Description:

The standard versions of these instructions perform four 16-bit or two 32-bit par-

titioned adds or subtracts between the corresponding fixed point values con-

tained in the source operands (rs1, rs2). For subtraction, rs2 is subtracted from rs1.

The result is placed in the destination register (rd).

The single precision version of these instructions (FPADD16S, FPSUB16S,

FPADD32S, FPSUB32S) perform two (16-bit) or one (32-bit) partitioned adds or

subtracts.

Note: For good performance, do not use the result of a single FPADD as part of

a 64-bit graphics instruction source operand in the next instruction group.

Similarly, do not use the result of a standard FPADD as a 32-bit graphics

instruction source operand in the next instruction group.

Traps:

fp_disabled

13.5.3 Pixel Formatting Instructions

Format (3):

opcode opf operation

FPACK16 0 0011 1011 Four 16-bit packs

FPACK32 0 0011 1010 Two 32-bit packs

FPACKFIX 0 0011 1101 Four 16-bit packs

FEXPAND 0 0100 1101 Four 16-bit expands

FPMERGE 0 0100 1011 Two 32-bit merges

Suggested Assembly Language Syntax

fpack16 freg rs2 , freg rd

fpack32 freg rs1 , freg rs2 , freg rd

fpackfix freg rs2 , freg rd

fexpand freg rs2 , freg rd

fpmerge freg rs1 , freg rs2 , freg rd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
200

13. UltraSPARC Extended Instructions
Description:

The PACK instructions convert to a lower precision fixed or pixel format. Input

values are clipped to the dynamic range of the output format. Packing applies a

scale factor from GSR.scale_factor to allow flexible positioning of the binary point.

Note: For good performance, do not use the result of an FPACK as part of a

64-bit graphics instruction source operand in the next three instruction groups.

Do not use the result of FEXPAND or FPMERGE as a 32-bit graphics instruction

source operand in the next three instruction groups.

Traps:
fp_disabled

13.5.3.1 FPACK16

FPACK16 takes four 16-bit fixed values in rs2, scales, truncates and clips them

into four 8-bit unsigned integers and stores the results in the 32-bit rd register.
Sun Microelectronics
201

UltraSPARC User’s Manual
Figure 13-3 FPACK16 Operation

This operation, illustrated in Figure 13-3, is carried out as follows:

1. Left shift the value in rs2 by the number of bits in the GSR.scale_factor,
while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit

immediately to the left of the implicit binary point (i.e. between bits 7 and

6 for each 16-bit word). Truncation is performed to convert the scaled value

into a signed integer (that is, round toward negative infinity). If the

resulting value is negative (that is, the MSB is set), zero is delivered as the

clipped value. If the value is greater than 255, then 255 is delivered.

Otherwise the scaled value is the final result.

3. Store the result in the corresponding byte in the 32-bit rd register.

1

rs2

rd

7

0

1
0

3
67

implicit binary pt

0

5

5

1
4

3 0

GSR.scale_factor 0100

1

rs2

rd

7

0

1
0

9
6

implicit binary pt

0

5

5

3 0

GSR.scale_factor 1010

1
0

00 00 000000

1
4

2
5

1
9

rs2

rd

723 15314763

00 00

7

Sun Microelectronics
202

13. UltraSPARC Extended Instructions
13.5.3.2 FPACK32

FPACK32 takes two 32-bit fixed values in rs2, scales, truncates and clips them

into two 8-bit unsigned integers. The two 8-bit integers are merged at the corre-

sponding least significant byte positions of each 32-bit word in rs1 left shifted by

8 bits. The 64-bit result is stored in the rd register. This allows two pixels to be as-

sembled by successive FPACK32 instructions using three or four pairs of 32-bit

fixed values.

This operation, illustrated in Figure 13-4, is carried out as follows:

1. Left shift each 32-bit value in rs2 by the number of bits in the

GSR.scale_factor, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting

at the bit immediately to the left of the implicit binary point (i.e. between

bits 23 and 22 of each 32-bit word). Truncation is performed to convert the

scaled value into a signed integer (that is, round toward negative infinity).

If the resulting value is negative (that is, the MSB is set), zero is delivered

as the clipped value. If the value is greater than 255, then 255 is delivered.

Otherwise the scaled value is the final result.

3. Left shift each 32-bit values in rs1 by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least

significant byte positions in the left-shifted rs2 value.

5. Store the result in the rd register.
Sun Microelectronics
203

UltraSPARC User’s Manual
Figure 13-4 FPACK32 Operation

13.5.3.3 FPACKFIX

FPACKFIX takes two 32-bit fixed values in rs2, scales, truncates and clips them

into two 16-bit signed integers, then stores the result in the 32-bit rd register.

This operation, illustrated in Figure 13-5, is carried out as follows:

1. Left shift each 32-bit value in rs2 by the number of bits in the

GSR.scale_factor, while maintaining clipping information.

3

rs2

rd

7

2 0
5

implicit binary pt

0

31
2
2

3 0

GSR.scale_factor 0110

rs2

rd

723 15314763

rs1

3
7

00 0000

3955
Sun Microelectronics
204

13. UltraSPARC Extended Instructions
2. For each 32-bit value, truncate and clip to a 16-bit signed integer starting at

the bit immediately to the left of the implicit binary point (i.e. between bits

16 and 15 of each 32-bit word). Truncation is performed to convert the

scaled value into a signed integer (i.e. rounds toward negative infinity). If

the resulting value is less than -32768, -32768 is delivered as the clipped

value. If the value is greater than 32767, 32767 is delivered. Otherwise the

scaled value is the final result.

3. Store the result in the 32-bit rd register.

Figure 13-5 FPACKFIX Operation

3

rs2

rd

1

1 0
5

Implicit Binary pt

0

61
1
5

3 0

GSR.scale_factor 0110

6 3

rs2

rd

13

3
7

00 0000

1
5

5

Sun Microelectronics
205

UltraSPARC User’s Manual
13.5.3.4 FEXPAND

FEXPAND takes four 8-bit unsigned integers in rs2, converts each integer to a 16-

bit fixed value, and stores the four 16-bit results in the rd register.

This operation, illustrated in Figure 13-6, is carried out as follows:

1. Left shift each 8-bit value by 4 and zero-extend the results to a 16-bit fixed

value.

2. Stores the results in the rd register.

Figure 13-6 FEXPAND Operation

13.5.3.5 FPMERGE

FPMERGE interleaves four corresponding 8-bit unsigned values in rs1 and rs2, to

produce a 64-bit value in the rd register. This instruction converts from packed to

planar representation when it is applied twice in succession; for example:

R1G1B1A1, R3G3B3A3 → R1R3G1G3B1B3 → R1R2R3R4B1B2B3B4

1

rs2

rd

0

3

5

1
1

6 3

rs2

rd

13

00 00

1
5

07

4
7

0
1

75
2
3

3
1

00 00
Sun Microelectronics
206

13. UltraSPARC Extended Instructions
FPMERGE also converts from planar to packed when it is applied twice in suc-

cession; for example:

R1R2R3R4, B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2

Figure 13-7 FPMERGE Operation

6 3

rs1

rd

13
1
5

4
7

0
1

75
2
3

3
1

2
3 7

3
9

5
5

0
1

75
2
3

3
1

rs2
Sun Microelectronics
207

UltraSPARC User’s Manual
13.5.4 Partitioned Multiply Instructions

Format (3):

The following sections describe the variations of partitioned multiply.

Note: For good performance, do not use the result of a partitioned multiply as a

32-bit graphics instruction source operand in the next three instruction groups.

Traps
fp_disabled

Note: When software emulating an 8-bit unsigned by 16-bit signed multiply, the

unsigned value must be zero-extended and the 16-bit value must be sign-

extended before the multiplication.

opcode opf operation

FMUL8x16 0 0011 0001 8- × 16-bit partitioned product

FMUL8x16AU 0 0011 0011 8- × 16-bit upper α partitioned product

FMUL8x16AL 0 0011 0101 8- × 16-bit lower α partitioned product

FMUL8SUx16 0 0011 0110 upper 8- × 16-bit partitioned product

FMUL8ULx16 0 0011 0111 lower unsigned 8- × 16-bit partitioned product

FMULD8SUx16 0 0011 1000 upper 8- × 16-bit partitioned product

FMULD8ULx16 0 0011 1001 lower unsigned 8- × 16-bit partitioned product

Suggested Assembly Language Syntax

fmul8x16 freg rs1 , freg rs2 , freg rd

fmul8x16au freg rs1 , freg rs2 , freg rd

fmul8x16al freg rs1 , freg rs2 , freg rd

fmul8sux16 freg rs1 , freg rs2 , freg rd

fmul8ulx16 freg rs1 , freg rs2 , freg rd

fmuld8sux16 freg rs1 , freg rs2 , freg rd

fmuld8ulx16 freg rs1 , freg rs2 , freg rd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
208

13. UltraSPARC Extended Instructions
13.5.4.1 FMUL8x16

FMUL8x16 multiplies each unsigned 8-bit value (i.e., a pixel) in rs1 by the corre-

sponding (signed) 16-bit fixed-point integers in rs2; it rounds the 24-bit product

(assuming a binary point between bits 7 and 8) and stores the upper 16 bits of the

result into the corresponding 16-bit field in the rd register. Figure 13-8 illustrates

the operation.

Note: This instruction treats the pixel values as fixed-point with the binary

point to the left of the most significant bit. Typically, this operation is used with

filter coefficients as the fixed-point rs2 value and image data as the rs1 pixel

value. Appropriate scaling of the coefficient allows various fixed-point scaling to

be realized.

Figure 13-8 FMUL8x16 Operation

13.5.4.2 FMUL8x16AU

FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value

is used for all four multiplies. This value is the most significant 16 bits of the

32-bit rs2 register, which is typically an α value. The operation is illustrated in

Figure 13-9 on page 210.

3

rd

rs1
1

1
5

2
3 07

6
3

4
7

rs2

*
msb

*
msb

*
msb

*
msb
Sun Microelectronics
209

UltraSPARC User’s Manual
Figure 13-9 FMUL8x16AU Operation

13.5.4.3 FMUL8x16AL

FMUL8x16AL is the same as FMUL8x16AU, except that the least significant 16

bits of the 32-bit rs2 register are used for the α value.

Figure 13-10 FMUL8x16AL Operation

3

rd

rs1
1

1
5

2
3 07

rs2

0

6
3

3

rd

rs1
1

1
5

2
3 07

rs2

0

6
3

Sun Microelectronics
210

13. UltraSPARC Extended Instructions
13.5.4.4 FMUL8SUx16

FMUL8SUx16 multiplies the upper 8 bits of each 16-bit signed value in rs1 by the

corresponding signed 16-bit fixed-point signed integer in rs2. It rounds the 24-bit

product (to nearest) and then stores the upper 16 bits of the result into the corre-

sponding 16-bit field of the rd register. If the product is exactly half way between

two integers, the result is rounded towards positive infinity. Figure 13-11 illus-

trates the operation.

Figure 13-11 FMUL8SUx16 Operation

13.5.4.5 FMUL8ULx16

FMUL8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in rs1 by

the corresponding fixed point signed integer in rs2. Each 24-bit product is sign-

extended to 32 bits. The upper 16-bits of the sign extended value are rounded to

nearest and stored in the corresponding 16 bits of the rd register. In the case that

the result is exactly half way between two integers, the result is rounded towards

positive infinity. The operation is illustrated in Figure 13-12.

Code Example 13-1 16-bit x 16-bit → 16-bit Multiply

fmul8sux16 %f0, %f2, %f4

fmul8ulx16 %f0, %f2, %f6

fpadd16 %f4, %f6, %f8

3

rd

rs1
1

1
5

2
3 07

rs2

5
5

3
9

4
7

6
3

msbmsbmsbmsb
Sun Microelectronics
211

UltraSPARC User’s Manual
Figure 13-12 FMUL8ULx16 Operation

13.5.4.6 FMULD8SUx16

FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in rs1 by

the corresponding signed 16-bit fixed point signed integer in rs2. The 24-bit prod-

uct is shifted left by 8-bits to make up a 32-bit result. The result is stored in the

corresponding 32-bit of the destination rd register. The operation is illustrated in

Figure 13-13.

Figure 13-13 FMULD8SUx16 Operation

3

rd

rs1
1

1
5

2
3 07

rs2

5
5

3
9

4
7

6
3

sign-extended
8 msb

sign-extended
8 msb

sign-extended
8 msb

sign-extended
8 msb

3

rd

rs1
1

1
5

2
3 07

rs2

**

00000000 00000000

07
3
9

4
0

6
3

Sun Microelectronics
212

13. UltraSPARC Extended Instructions
13.5.4.7 FMULD8ULx16

FMULD8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in rs1 by

the corresponding fixed point signed integer in rs2. Each 24-bit product is sign-

extended to 32 bits and stored in the rd register. The operation is illustrated in

Figure 13-14.

Figure 13-14 FMULD8ULx16 Operation

Code Example 13-2 16-bit x 16-bit → 32-bit Multiply
fmuld8sux16%f0, %f2, %f4
fmuld8ulx16%f0, %f2, %f6
fpadd32 %f4, %f6, %f8

3

rd

rs1
1

1
5

2
3 07

rs2

**sign-extended sign-extended

0
6
3

Sun Microelectronics
213

UltraSPARC User’s Manual
13.5.5 Alignment Instructions

Format (3):

Description:

ALIGNADDRESS adds two integer registers, rs1 and rs2, and stores the result,

with the least significant 3 bits forced to zero, in the integer rd register. The least

significant 3 bits of the result are stored in the GSR.alignaddr_offset field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS, except that the 2’s

complement of the least significant 3 bits of the result is stored in

GSR.alignaddr_offset.

Note: ALIGNADDRL is used to generate the opposite-endian byte ordering for

a subsequent FALIGNDATA operation.

FALIGNDATA concatenates two 64-bit floating-point registers, rs1 and rs2, to

form a 16-byte value; it stores the result in the 64-bit floating-point rd register. Rs1
is the upper half and rs2 is the lower half of the concatenated value. Bytes in this

value are numbered from most significant to least significant, with the most sig-

nificant byte being byte 0. Eight bytes are extracted from this value, where the

most significant byte of the extracted value is the byte whose number is specified

by the GSR.alignaddr_offset field.

A byte-aligned 64-bit load can be performed as follows:

Code Example 13-3 Byte-Aligned 64-bit Load
alignaddr Address, Offset, Address
ldd [Address], %f0
ldd [Address + 8], %f4

opcode opf operation

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned data access

ALIGNADDRESS_LITTLE 0 0001 1010 Calculate address for misaligned data access,
little-endian

FALIGNDATA 0 0100 1000 Perform data alignment for misaligned data

Suggested Assembly Language Syntax

alignaddr reg rs1 , reg rs2 , reg rd

alignaddrl reg rs1 , reg rs2 , reg rd

faligndata freg rs1 , freg rs2 , freg rd

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
214

13. UltraSPARC Extended Instructions
faligndata %f0, %f4, %f8

Traps

fp_disabled

Note: For good performance, do not use the result of FALIGN as a 32-bit

graphics instruction source operand in the next instruction group.

13.5.6 Logical Operate Instructions
opcode opf operation

FZERO 0 0110 0000 Zero fill

FZEROS 0 0110 0001 Zero fill, single precision

FONE 0 0111 1110 One fill

FONES 0 0111 1111 One fill, single precision

FSRC1 0 0111 0100 Copy src1

FSRC1S 0 0111 0101 Copy src1 , single precision

FSRC2 0 0111 1000 Copy src2

FSRC2S 0 0111 1001 Copy src2 , single precision

FNOT1 0 0110 1010 Negate (1’s complement) src1

FNOT1S 0 0110 1011 Negate (1’s complement) src1 , single precision

FNOT2 0 0110 0110 Negate (1’s complement) src2

FNOT2S 0 0110 0111 Negate (1’s complement) src2 , single precision

FOR 0 0111 1100 Logical OR

FORS 0 0111 1101 Logical OR, single precision

FNOR 0 0110 0010 Logical NOR

FNORS 0 0110 0011 Logical NOR, single precision

FAND 0 0111 0000 Logical AND

FANDS 0 0111 0001 Logical AND, single precision

FNAND 0 0110 1110 Logical NAND

FNANDS 0 0110 1111 Logical NAND, single precision

FXOR 0 0110 1100 Logical XOR

FXORS 0 0110 1101 Logical XOR, single precision

FXNOR 0 0111 0010 Logical XNOR

FXNORS 0 0111 0011 Logical XNOR, single precision

FORNOT1 0 0111 1010 Negated src1 OR src2

FORNOT1S 0 0111 1011 Negated src1 OR src2 , single precision

FORNOT2 0 0111 0110 Src1 OR negated src2

FORNOT2S 0 0111 0111 Src1 OR negated src2 , single precision

FANDNOT1 0 0110 1000 Negated src1 AND src2

FANDNOT1S 0 0110 1001 Negated src1 AND src2 , single precision

FANDNOT2 0 0110 0100 Src1 AND negated src2

FANDNOT2S 0 0110 0101 Src1 AND negated src2 , single precision
Sun Microelectronics
215

UltraSPARC User’s Manual
Format (3):

Suggested Assembly Language Syntax

fzero freg rd

fzeros freg rd

fone freg rd

fones freg rd

fsrc1 freg rs1 , freg rd

fsrc1s freg rs1 , freg rd

fsrc2 freg rs2 , freg rd

fsrc2s freg rs2 , freg rd

fnot1 freg rs1 , freg rd

fnot1s freg rs1 , freg rd

fnot2 freg rs2 , freg rd

fnot2s freg rs2 , freg rd

for freg rs1 , freg rs2 , freg rd

fors freg rs1 , freg rs2 , freg rd

fnor freg rs1 , freg rs2 , freg rd

fnors freg rs1 , freg rs2 , freg rd

fand freg rs1 , freg rs2 , freg rd

fands freg rs1 , freg rs2 , freg rd

fnand freg rs1 , freg rs2 , freg rd

fnands freg rs1 , freg rs2 , freg rd

fxor freg rs1 , freg rs2 , freg rd

fxors freg rs1 , freg rs2 , freg rd

fxnor freg rs1 , freg rs2 , freg rd

fxnors freg rs1 , freg rs2 , freg rd

fornot1 freg rs1 , freg rs2 , freg rd

fornot1s freg rs1 , freg rs2 , freg rd

fornot2 freg rs1 , freg rs2 , freg rd

fornot2s freg rs1 , freg rs2 , freg rd

fandnot1 freg rs1 , freg rs2 , freg rd

fandnot1s freg rs1 , freg rs2 , freg rd

fandnot2 freg rs1 , freg rs2 , freg rd

fandnot2 freg rs1 , freg rs2 , freg rd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
216

13. UltraSPARC Extended Instructions
Description:

The standard 64-bit version of these instructions perform one of sixteen 64-bit

logical operations between rs1 and rs2. The result is stored in rd. The 32-bit (sin-

gle-precision) version of these instructions performs 32-bit logical operations.

Note: For good performance, do not use the result of a single logical as part of

a 64-bit graphics instruction source operand in the next instruction group.

Similarly, do not use the result of a standard logical as a 32-bit graphics

instruction source operand in the next instruction group.

Traps

fp_disabled

13.5.7 Pixel Compare Instructions

Format (3):

opcode opf operation

FCMPGT16 0 0010 1000 Four 16-bit compare; set rd if src1
> src2

FCMPGT32 0 0010 1100 Two 32-bit compare; set rd if src1
> src2

FCMPLE16 0 0010 0000 Four 16-bit compare; set rd if src1
≤ src2

FCMPLE32 0 0010 0100 Two 32-bit compare; set rd if src1
≤ src2

FCMPNE16 0 0010 0010 Four 16-bit compare; set rd if src1
≠ src2

FCMPNE32 0 0010 0110 Two 32-bit compare; set rd if src1
≠ src2

FCMPEQ16 0 0010 1010 Four 16-bit compare; set rd if src1
= src2

FCMPEQ32 0 0010 1110 Two 32-bit compare; set rd if src1
= src2

Suggested Assembly Language Syntax

fcmpgt16 freg rs1 , freg rs2 , reg r
d

fcmpgt32 freg rs1 , freg rs2 , reg r
d

fcmple16 freg rs1 , freg rs2 , reg r
d

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
217

UltraSPARC User’s Manual
Description:

Four 16-bit or two 32-bit fixed-point values in rs1 and rs2 are compared. The 4-bit

or 2-bit results are stored in the corresponding least significant bits of the integer

rd register. Bit zero of rd corresponds to the least significant 16-bit or 32-bit graph-

ics compare result.

For FCMPGT, each bit in the result is set if the corresponding value in rs1 is

greater than the value in rs2. Less-than comparisons are made by swapping the

operands.

For FCMPLE, each bit in the result is set if the corresponding value in rs1 is less

than or equal to the value in rs2. Greater-than-or-equal comparisons are made by

swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in rs1 is equal

to the value in rs2.

For FCMPNE, each bit in the result is set if the corresponding value in rs1 is not

equal to the value in rs2.

Traps:
fp_disabled

fcmple32 freg rs1 , freg rs2 , reg r
d

fcmpne16 freg rs1 , freg rs2 , reg r
d

fcmpne32 freg rs1 , freg rs2 , reg r
d

fcmpeq16 freg rs1 , freg rs2 , reg r
d

fcmpeq32 freg rs1 , freg rs2 , reg r
d

Suggested Assembly Language Syntax
Sun Microelectronics
218

13. UltraSPARC Extended Instructions
13.5.8 Edge Handling Instructions

Format (3):

Description:

These instructions are used to handle the boundary conditions for parallel pixel

scan line loops, where src1 is the address of the next pixel to render and src2 is

the address of the last pixel in the scan line.

EDGE8L, EDGE16L, and EDGE32L are little-endian versions of EDGE8, EDGE16

and EDGE32. They produce an edge mask that is bit reversed from their big-en-

dian counterparts, but are otherwise the same. This makes the mask consistent

with the mask generated by the graphics compare operations (see Section 13.5.7,

“Pixel Compare Instructions,” on page 217) on little-endian data.

A 2- (EDGE32), 4- (EDGE16), or 8-bit (EDGE8) pixel mask is stored in the least

significant bits of rd. The mask is computed from left and right edge masks as fol-

lows:

1. The left edge mask is computed from the 3 least significant bits (LSBs) of

rs1 and the right edge mask is computed from the 3 LSBs of rs2, according

to Table 13-1 (Table 13-2 for little-endian byte ordering).

opcode opf operation

EDGE8 0 0000 0000 Eight 8-bit edge boundary processing

EDGE8L 0 0000 0010 Eight 8-bit edge boundary processing, little-
endian

EDGE16 0 0000 0100 Four 16-bit edge boundary processing

EDGE16L 0 0000 0110 Four 16-bit edge boundary processing, little-
endian

EDGE32 0 0000 1000 Four 32-bit edge boundary processing

EDGE32L 0 0000 1010 Two 32-bit edge boundary processing, little-
endian

Suggested Assembly Language Syntax

edge8 reg rs1 , reg rs2 , reg rd

edge8l reg rs1 , reg rs2 , reg rd

edge16 reg rs1 , reg rs2 , reg rd

edge16l reg rs1 , reg rs2 , reg rd

edge32 reg rs1 , reg rs2 , reg rd

edge32l reg rs1 , reg rs2 , reg rd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
219

UltraSPARC User’s Manual
2. If 32-bit address masking is disabled (PSTATE.AM = 0, 64-bit addressing)

and the upper 61 bits of rs1 are equal to the corresponding bits in rs2, rd is

set equal to the right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.AM = 1, 32-bit addressing) is

set and the bits <31:3> of rs1 are equal to the corresponding bits in rs2, rd
is set to the right edge mask ANDed with the left edge mask.

4. Otherwise, rd is set to the left edge mask.

The integer condition codes are set the same as a SUBCC instruction with the

same operands. End of scan line comparison tests may be performed using edge

with an appropriate conditional branch instruction.

Traps:
None

Table 13-1 Edge Mask Specification

Edge Size A2..A0 Left Edge Right Edge

8 000 1111 1111 1000 0000

8 001 0111 1111 1100 0000

8 010 0011 1111 1110 0000

8 011 0001 1111 1111 0000

8 100 0000 1111 1111 1000

8 101 0000 0111 1111 1100

8 110 0000 0011 1111 1110

8 111 0000 0001 1111 1111

16 00x 1111 1000

16 01x 0111 1100

16 10x 0011 1110

16 11x 0001 1111

32 0xx 11 10

32 1xx 01 11
Sun Microelectronics
220

13. UltraSPARC Extended Instructions
13.5.9 Pixel Component Distance (PDIST)

Format (3):

Description:

Eight unsigned 8-bit values are contained in the 64-bit rs1 and rs2 registers. The

corresponding 8-bit values in rs1 and rs2 are subtracted (i.e., rs1 – rs2). The sum

of the absolute value of each difference is added to the integer in the 64-bit rd reg-

ister. The result is stored in rd. Typically, this instruction is used for motion esti-

mation in video compression algorithms.

Note: For good performance, the rd operand of PDIST should not reference the

result of a nonPDIST instruction in the previous two instruction groups.

Table 13-2 Edge Mask Specification (Little-Endian)

Edge Size A2..A0 Left Edge Right Edge

8 000 1111 1111 0000 0001

8 001 1111 1110 0000 0011

8 010 1111 1100 0000 0111

8 011 1111 1000 0000 1111

8 100 1111 0000 0001 1111

8 101 1110 0000 0011 1111

8 110 1100 0000 0111 1111

8 111 1000 0000 1111 1111

16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111

16 11x 1000 1111

32 0xx 11 01

32 1xx 10 11

opcode opf operation

PDIST 0 0011 1110 distance between 8 8-bit components

Suggested Assembly Language Syntax

pdist freg rs1 , freg rs2 , freg rd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
221

UltraSPARC User’s Manual
Traps:

fp_disabled

13.5.10 Three-Dimensional Array Addressing Instructions

Format (3):

Description:

These instructions convert three dimensional (3D) fixed-point addresses con-

tained in rs1 to a blocked-byte address; they store the result in rd. Fixed-point ad-

dresses typically are used for address interpolation for planar reformatting

operations. Blocking is performed at the 64-byte level to maximize external cache

block reuse, and at the 64k-byte level to maximize TLB entry reuse, regardless of

the orientation of the address interpolation. These instructions specify an element

size of 8 (ARRAY8), 16 (ARRAY16) or 32 bits (ARRAY32). The rs2 operand speci-

fies the power-of-two size of the X and Y dimensions of a 3D image array. The

legal values for rs2 and their meanings are shown in the following table. Illegal

values will produce undefined results in the rd register.

opcode opf operation

ARRAY8 0 0001 0000 Convert 8-bit 3-D address to blocked byte address

ARRAY16 0 0001 0010 Convert 16-bit 3-D address to blocked byte address

ARRAY32 0 0001 0100 Convert 32-bit 3-D address to blocked byte address

Suggested Assembly Language Syntax

array8 reg rs1 , reg rs2 , reg rd

array16 reg rs1 , reg rs2 , reg rd

array32 reg rs1 , reg rs2 , reg rd

rs2
Value

Number of
Elements

0 64

1 128

2 256

3 512

4 1,024

5 2,048

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Sun Microelectronics
222

13. UltraSPARC Extended Instructions
Figure 13-15 shows the format of rs1.

Figure 13-15 Three Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address

formats:

Figure 13-16 Three Dimensional Array Blocked-Address Format (Array8)

Figure 13-17 Three Dimensional Array Blocked-Address Format (Array16)

Figure 13-18 Three Dimensional Array Blocked-Address Format (Array32)

The bits above Z upper are set to zero. The number of zeros in the least signifi-

cant bits is determined by the element size. An element size of eight bits has no

zeros, an element size of 16-bits has one zero, and an element size of 32-bits has

two zeros. Bits in X and Y above the size specified by rs2 are ignored.

Z fraction X fractionZ integer Y integer

63 334454 43 32 055 10

X integer

11

Y fraction

2122

2 0

X

4

YZ

Lower

9 5

X

13

YZ

Middle

17 17

X

17

YZ

Upper

+ isrc2+ 2 isrc2
20

+ 2 isrc2

0

03 1

X

5

YZ

Lower

10 6

X

14

YZ

Middle

18 18

X

18

YZ

Upper

+ isrc2+ 2 isrc2
21

+ 2 isrc2

00

04 2

X

6

YZ

Lower

11 7

X

15

YZ

Middle

19 19

X

19

YZ

Upper

+ isrc2+ 2 isrc2
22

+ 2 isrc2
Sun Microelectronics
223

UltraSPARC User’s Manual
Note: To maximize reuse of E-Cache and TLB data, software should block array

references for large images to the 64 KB level. This means processing elements

within a 32x64x64 block.

The following code fragment shows assembly of components along an interpolat-

ed line at the rate of one component per clock on UltraSPARC:

Code Example 13-4 Assembly of Components Along an Interpolated Line
add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] ASI_FL8_PRIMARY, data
faligndata data, accum, accum

Traps:
None
Sun Microelectronics
224

13. UltraSPARC Extended Instructions
13.6 Memory Access Instructions

13.6.1 Partial Store Instructions

Format (3):

Description:

The partial store instructions are selected by using one of the partial store ASIs

with the STDA instruction.

Two 32-bit, four 16-bit or eight 8-bit values from the 64-bit rd register are condi-

tionally stored at the address specified by rs1 using the mask specified by rs2. The

value in rs2 has the same format as the result generated by the pixel compare in-

structions (see Section 13.5.7, “Pixel Compare Instructions,” on page 217). The

Opcode imm_asi ASI Value Operation

STDFA ASI_PST8_P C016 Eight 8-bit conditional stores to primary address
space

STDFA ASI_PST8_S C116 Eight 8-bit conditional stores to secondary address
space

STDFA ASI_PST8_PL C816 Eight 8-bit conditional stores to primary address
space, little-endian

STDFA ASI_PST8_SL C916 Eight 8-bit conditional stores to secondary address
space, little-endian

STDFA ASI_PST16_P C216 Four 16-bit conditional stores to primary address
space

STDFA ASI_PST16_S C316 Four 16-bit conditional stores to secondary address
space

STDFA ASI_PST16_PL CA16 Four 16-bit conditional stores to primary address
space, little-endian

STDFA ASI_PST16_SL CB16 Four 16-bit conditional stores to secondary address
space, little-endian

STDFA ASI_PST32_P C416 Two 32-bit conditional stores to primary address
space

STDFA ASI_PST32_S C516 Two 32-bit conditional stores to secondary address
space

STDFA ASI_PST832_PL CC16 Two 32-bit conditional stores to primary address
space, little-endian

STDFA ASI_PST32_SL CD16 Two 32-bit conditional stores to secondary address
space, little-endian

Suggested Assembly Language Syntax

stda freg rd , [reg rs1] reg rs2 , imm_asi

11 11 0111 rs2rd rs1

31 141924 18 13 02530 29 4

imm_asi

5

i=0

12
Sun Microelectronics
225

UltraSPARC User’s Manual
most significant bit of the mask (not the entire register) corresponds to the most

significant part of the rs1 register. The data is stored in little-endian form in mem-

ory if the ASI name has a “_LITTLE” suffix; otherwise, it is big-endian.

Note: If the byte ordering is little-endian, the byte enables generated by this

instruction are swapped with respect to big-endian.

Traps:
fp_disabled
mem_address_not_aligned
data_access_exception
PA_watchpoint
VA_watchpoint
illegal_instruction (when i = 1, no immediate mode is supported. This is not checked if

there is a data_access_exception for a non-STDFA opcode).
Sun Microelectronics
226

13. UltraSPARC Extended Instructions
13.6.2 Short Floating-Point Load and Store Instructions

Format (3) LDDFA

Format (3) STDFA

Description:

Short floating-point load and store instructions are selected by using one of the

short ASIs with the LDDA and STDA instructions.

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_FL8_P D016 8-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL8_S D116 8-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL8_PL D816
8-bit load/store from/to primary address space, lit-
tle-endian

LDDFA
STDFA

ASI_FL8_SL D916
8-bit load/store from/to secondary address space,
little-endian

LDDFA
STDFA

ASI_FL16_P D216 16-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL16_S D316 16-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL16_PL DA16
16-bit load/store from/to primary address space, lit-
tle-endian

LDDFA
STDFA

ASI_FL16_SL DB16
16-bit load/store from/to secondary address space,
little-endian

Suggested Assembly Language Syntax

ldda [reg_addr] imm_asi , freg rd

ldda [reg_plus_imm] %asi, freg rd

stda freg rd , [reg_addr] imm_asi

stda freg rd , [reg_plus_imm] %asi

11 11 0011 rs2rd rs1

4

imm_asi

5

i=0

11 11 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12

11 11 0111 rs2rd rs1

4

imm_asi

5

i=0

11 11 0111rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
Sun Microelectronics
227

UltraSPARC User’s Manual
These ASIs allow 8- and 16-bit loads or stores to be performed to the floating-

point registers. Eight-bit loads can be performed to arbitrary byte addresses. For

sixteen bit loads, the least significant bit of the address must be zero, or a

mem_not_aligned trap is taken. Short loads are zero-extended to the full floating

point register. Short stores access the low order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise,

memory is assumed to big-endian. Short loads and stores typically are used with

the FALIGNDATA instruction (see Section 13.5.5, “Alignment Instructions,” on

page 214) to assemble or store 64 bits of non-contiguous components.

Traps:
fp_disabled
PA_watchpoint
VA_watchpoint
mem_address_not_aligned (Checked for opcode implied alignment if the

opcode is not LDFA or STDFA)
Sun Microelectronics
228

13. UltraSPARC Extended Instructions
13.6.3 Atomic Quad Load

Format (3) LDDA:

Description:

These ASIs are used with the LDDA instruction to atomically read a 128-bit data

item. They are intended to be used by the TLB miss handler to access TSB entries

without requiring locks. The data is placed in an even/odd pair of 64-bit integer

registers. The lowest address 64-bits is placed in the even register; the highest ad-

dress 64-bits is placed in the odd register. The reference will be made from the

nucleus context. In addition to the usual traps for LDDA using a privileged ASI,

a data_access_exception trap will be taken for a noncacheable access, or use with

any instruction other than LDDA. A mem_address_not_aligned trap will be taken if

the access is not aligned on a 128-bit boundary.

Traps:
fp_disabled
PA_watchpoint
VA_watchpoint
mem_address_not_aligned (Checked for opcode implied alignment if the

opcode is not LDFA or STDFA)

data_access_exception

Opcode imm_asi ASI Value Operation

LDDA ASI_NUCLEUS_QUAD_LDD 2416 128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L 2C16 128-bit atomic load, little
endian

Suggested Assembly Language Syntax

ldda [reg_addr] imm_asi , reg rd

ldda [reg_plus_imm] %asi, reg rd

11 01 0011 rs2rd rs1

4

imm_asi

5

i=0

11 01 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
Sun Microelectronics
229

UltraSPARC User’s Manual
13.6.4 Block Load and Store Instructions

Format (3) LDDFA:

Format (3) STDFA:

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_BLK_AIUP 7016
64-byte block load/store from/ to primary
address space, user privilege

LDDFA
STDFA

ASI_BLK_AIUS 7116
64-byte block load/store from/ to secondary
address space, user privilege

LDDFA
STDFA

ASI_BLK_AIUPL 7816

64-byte block load/store from/ to primary
address space, user privilege, little-
endian

LDDFA
STDFA

ASI_BLK_AIUSL 7916

64-byte block load/store from/ to secondary
address space, user privilege, little-
endian

LDDFA
STDFA

ASI_BLK_P F016
64-byte block load/store from/to primary
address space

LDDFA
STDFA

ASI_BLK_S F116
64-byte block load/store from/ to secondary
address space

LDDFA
STDFA

ASI_BLK_PL F816
64-byte block load/store from/to primary
address space, little-endian

LDDFA
STDFA

ASI_BLK_SL F916
64-byte block load/store from/to secondary
address space, little-endian

STDFA ASI_BLK_COMMIT_P E016
64-byte block commit store to primary
address space

STDFA ASI_BLK_COMMIT_S E116
64-byte block commit store to secondary
address space

Suggested Assembly Language Syntax

ldda [reg_addr] imm_asi , freg rd

ldda [reg_plus_imm] %asi, freg rd

stda freg rd , [reg_addr] imm_asi

stda freg rd , [reg_plus_imm] %asi

11 11 0011 rs2rd rs1

4

imm_asi

5

i=0

11 11 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12

11 11 0111 rs2rd rs1

4

imm_asi

5

i=0

11 11 0111rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
Sun Microelectronics
230

13. UltraSPARC Extended Instructions
Description:

Block load and store instructions are selected by using one of the block transfer

ASIs with the LDDA and STDA instructions. These ASIs allow block loads or

stores to be performed to the same address spaces as normal loads and stores.

Little-endian ASIs access data in little-endian format, otherwise the access is as-

sumed to be big-endian. The byte swapping is performed separately for each of

the eight double-precision registers used by the instruction. Endianness does not

matter if these instructions are being used for block copy.

Block stores with commit force the data to be written to memory and invalidate

copies in all caches, if present. As a result, block commit stores maintain coheren-

cy with the I-Cache unlike other stores. They do not, however, flush instructions

that have already been fetched into the pipeline. Execute a FLUSH, DONE, or RE-

TRY instruction to flush the pipeline before executing the modified code.

LDDA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned

memory area into eight double-precision floating-point registers specified by

fregrd. The lowest addressed eight bytes in memory are loaded into the lowest

numbered double-precision rd register. An illegal_instruction trap is taken if the

floating-point registers are not aligned on an eight-double-precision register

boundary. The least significant 6 bits of the address must be zero or a

mem_address_not_aligned trap is taken.

STDA with a block transfer ASI stores data from eight double-precision floating-

point registers specified by rs1 to a 64 byte aligned memory area. The lowest ad-

dressed eight bytes in memory are stored from the lowest numbered double pre-

cision freg. An illegal_instruction trap is taken if the floating-point registers are not

aligned on an eight register boundary. The least significant 6 bits of the address

must be zero, or a mem_address_not_aligned trap is taken.

Traps:

fp_disabled

illegal_instruction (nonaligned rd. Not checked if opcode is not LDFA or STDFA)

data_access_exception

mem_address_not_aligned (Checked for opcode implied alignment if the
opcode is not LDFA or STDFA)

PA_watchpoint

VA_watchpoint
Sun Microelectronics
231

UltraSPARC User’s Manual
Note: These instructions are used for transferring large blocks of data (more

than 256 bytes); for example, BCOPY and BFILL. On UltraSPARC they do not

allocate in the D-Cache or E-Cache on a miss. UltraSPARC updates the E-Cache

on a hit. UltraSPARC allows one BLD and two BSTs to be outstanding on the

interconnect at one time.

To simplify the implementation, BLD destination registers may or may not inter-

lock like ordinary load instructions. Before referencing the block load data, a sec-

ond BLD (to a different set of registers) or a MEMBAR #Sync must be performed.

If a second BLD is used to synchronize with returning data, then UltraSPARC

continues execution before all data has been returned. The lowest number regis-

ter being loaded may be referenced in the first instruction group following the

second BLD, the second lowest number register may be referenced in the second

group, and so on. If this rule is violated, data from before or after the load may be

returned.

Similarly, BST source data registers are not interlocked against completion of pre-

vious load instructions (even if a second BLD has been performed). The previous

load data must be referenced by some other intervening instruction, or an inter-

vening MEMBAR #Sync must be performed. If the programmer violates these

rules, data from before or after the load may be used. UltraSPARC continues exe-

cution before all of the store data has been transferred. If store data registers are

overwritten before the next block store or MEMBAR #Sync instruction, then the

following rule must be observed. The first register can be overwritten in the same

instruction group as the BST, the second register can be overwritten in the in-

struction group following the block store and so on. If this rule is violated, the

store may store correct data or the overwritten data.

There must be a MEMBAR #Sync or a trap following a BST before executing a

DONE, RETRY, or WRPR to PSTATE instruction. If this is rule is violated, instruc-

tions after the DONE, RETRY, or WRPR to PSTATE may not see the effects of the

updated PSTATE.

BLD does not follow memory model ordering with respect to stores. In particular,

read-after-write and write-after-read hazards to overlapping addresses are not

detected. The side effects bit associated with the access is ignored (see Section 6.2,

“Translation Table Entry (TTE),” on page 41). If ordering with respect to earlier

stores is important (for example, a block load that overlaps previous stores), then

there must be an intervening MEMBAR #StoreLoad or stronger MEMBAR. If

ordering with respect to later stores is important (e.g. a block load that overlaps a

subsequent store), then there must be an intervening MEMBAR #LoadStore or

reference to the block load data. This restriction does not apply when a trap is
Sun Microelectronics
232

13. UltraSPARC Extended Instructions
taken, so the trap handler need not consider pending block loads. If the BLD

overlaps a previous or later store and there is no intervening MEMBAR, trap, or

data reference, the BLD may return data from before or after the store.

BST does not follow memory model ordering with respect to loads, stores or

flushes. In particular, read-after-write, write-after-write, flush after write and

write-after-read hazards to overlapping addresses are not detected. The side ef-

fects bit associated with the access is ignored. If ordering with respect to earlier

or later loads or stores is important then there must be an intervening reference

to the load data (for earlier loads), or appropriate MEMBAR instruction. This re-

striction does not apply when a trap is taken, so the trap handler does not have to

worry about pending block stores. If the BST overlaps a previous load and there

is no intervening load data reference or MEMBAR #LoadStore instruction, the

load may return data from before or after the store and the contents of the block

are undefined. If the BST overlaps a later load and there is no intervening trap or

MEMBAR #StoreLoad instruction, the contents of the block are undefined. If

the BST overlaps a later store or flush and there is no intervening trap or MEM-

BAR #StoreStore instruction, the contents of the block are undefined.

Block load and store operations do not obey the ordering restrictions of the cur-

rently selected processor memory model (TSO, PSO, or RMO); block operations

always execute under an RMO memory ordering model. Explicit MEMBAR in-

structions are required to order block operations among themselves or with re-

spect to normal loads and stores. In addition, block operations do not conform to

dependence order on the issuing processor; that is, no read-after-write or writer-

after-read checking occurs between block loads and stores. Explicit MEMBARs

are required to enforce dependence ordering between block operations that refer-

ence the same address.

Typically, BLD and BST will be used in loops where software can ensure that

there is no overlap between the data being loaded and the data being stored. The

loop will be preceded and followed by the appropriate MEMBARs to ensure that

there are no hazards with loads and stores outside the loops. Code Example 13-5

on page 234 illustrates the inner loop of a byte-aligned block copy operation.
Sun Microelectronics
233

UltraSPARC User’s Manual
Code Example 13-5 Byte-Aligned Block Copy Inner Loop

Note that the loop must be unrolled two times to achieve maximum
performance. All FP registers are double-precision. Eight versions of
this loop are needed to handle all the cases of double word
misalignment between the source and destination.

loop:

faligndata %f0, %f2, %f34

faligndata %f2, %f4, %f36

faligndata %f4, %f6, %f38

faligndata %f6, %f8, %f40

faligndata %f8, %f10, %f42

faligndata %f10, %f12, %f44

faligndata %f12, %f14, %f46

addcc l0, -1, l0

bg,pt l1

fmovd %f14, %f48

(end of loop handling)

l1: ldda [regaddr] ASI_BLK_P, %f0

stda %f32, [regaddr] ASI_BLK_P

faligndata %f48, %f16, %f32

faligndata %f16, %f18, %f34

faligndata %f18, %f20, %f36

faligndata %f20, %f22, %f38

faligndata %f22, %f24, %f40

faligndata %f24, %f26, %f42

faligndata %f26, %f28, %f44

faligndata %f28, %f30, %f46

addcc l0, -1, l0

be,pnt done

fmovd %f30, %f48

ldda [regaddr] ASI_BLK_P, %f16

stda %f32, [regaddr] ASI_BLK_P

ba loop

faligndata %f48, %f0, %f32

done: (end of loop processing)
Sun Microelectronics
234

Implementation Dependencies 14
14.1 SPARC-V9 General Information

14.1.1 Level-2 Compliance (Impdep #1)

UltraSPARC is designed to meet Level-2 SPARC-V9 compliance. It

• Correctly interprets all non-privileged operations, and

• Correctly interprets all privileged elements of the architecture.

Note: System emulation routines (for example, quad-precision floating-point

operations) shipped with UltraSPARC also must be Level-2 compliant.

14.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP

SPARC-V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with in-

valid values in reserved fields (other than reserved FPops or fields in graphics in-

structions that reference floating-point registers and the reserved field in the Tcc

instruction) encountered during execution cause an illegal_instruction trap. The re-
served field in the Tcc instruction is not checked because SPARC-V8 did not re-

serve this field. Reserved FPops and invalid values in reserved fields in graphics

instructions that reference floating-point registers cause an fp_exception_other
(with FSR.ftt=unimplemented_FPop) trap. Unimplemented and reserved ASI values

cause a data_access_exception trap.
Sun Microelectronics
235

UltraSPARC User’s Manual
14.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)

UltraSPARC supports five trap levels; that is, MAXTL=5. Normal execution is at

TL0. Traps at MAXTL–1 cause the CPU to enter RED_state. If a trap is generated

while the CPU is operating at TL = MAXTL, the CPU will enter error_state and

generate a Watchdog Reset (WDR). CWP updates for window traps that cause en-

ter error_state are the same as when error_state is not entered.

Note: The RED_state trap vector address (RSTVaddr) is 256MB below the top of

the virtual address space; this is, at virtual address FFFF FFFF F000 000016, which

is passed through to physical address 1FF F000 000016 in RED_state.

A processor normally executes at trap level 0 (execute_state, TL0). The trap han-

dling mechanism in SPARC-V9 differs from SPARC-V8 when a trap or error con-

dition is encountered at TL0. In SPARC-V8, the CPU enters trap state and system

(privileged) software must save enough processor state to guarantee that any er-

ror condition detected while in the trap handler will not put the CPU into

error_state (i.e. cause a reset). Then the trap routine is entered to process the er-

roneous condition. Upon completion of trap processing, the state of the CPU is

restored before returning to the offending code or terminating the process. This

time-consuming operation is necessary because SPARC-V8 does not support

nested traps.

In SPARC-V9, a trap brings the CPU into the next higher trap level. The most im-

portant machine states (PC, next PC, PSTATE) are saved on the trap stack. There

is one set of trap state registers for each trap level, so that entering into a higher

trap level is a very fast and efficient process. Then the trap (or error) condition is

processed.

For a complete description of traps and RED_state handling, see Section 10.3,

“Machine State after Reset and in RED_state,” on page 171.

14.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)

UltraSPARC supports precise trap handling for all operations except for deferred

or disrupting traps from hardware failures encountered during memory accesses.

These failures are discussed in Section 11.2, “Memory Errors,” on page 178.

UltraSPARC implements precise traps, interrupts, and exceptions for all instruc-

tions, including long latency floating-point operations. Five traps levels are sup-

ported, which allows graceful recovery from faults. The trap levels are shown in

Figure 14-1. UltraSPARC can efficiently execute kernel code even in the event of
Sun Microelectronics
236

14. Implementation Dependencies
multiple nested traps, promoting processor efficiency while dramatically reduc-

ing the system overhead needed for trap handling. Three sets of alternate globals

are selected for different kinds of traps:

• MMU globals for memory faults

• Interrupt globals, and

• Alternate globals for all other exceptions.

This further increases OS performance, providing fast trap execution by avoiding

the need to save and restore registers while processing exceptions.

Figure 14-1 Nested Trap Levels

All traps supported in UltraSPARC are listed in Table 8-6, “Traps Supported in

UltraSPARC,” on page 158.

14.1.5 SIGM Support (Impdep #116)

UltraSPARC initiates a Software-Initiated Reset (SIR) by executing a SIGM in-

struction while in privileged mode. When in non-privileged mode, SIGM behaves

as a NOP. See also Section 10.1.3, “Software-Initiated Reset (SIR),” on page 171.

14.1.6 44-bit Virtual Address Space

UltraSPARC supports a 44-bit subset of the full 64-bit virtual address space. Al-

though the full 64 bits are generated and stored in integer registers, legal address-

es are restricted to two equal halves at the extreme lower and upper portions of

the full virtual address space. Virtual addresses between 0000 08FF FFFF FFFF16

Level 0: Normal Program Execution

Level 1: System Calls, Interrupt Handlers, Emulation

Level 2: Exceptions in Common OS Routines

Level 3: Page Fault Handlers

Level 4: RED_state Handler
Sun Microelectronics
237

UltraSPARC User’s Manual
and FFFF F7FF FFFF FFFF16 inclusive are termed “out-of-range” and are illegal.

Address translation and MMU related descriptions can be found in Section 4.2,

“Virtual Address Translation,” on page 21.

Figure 14-2 UltraSPARC’s 44-bit Virtual Address Space, with Hole (Same as Figure 4-2)

Note: Throughout this document, when virtual address fields are specified as

64-bit quantities, they are assumed to be sign-extended based on VA<43>.

A number of state registers are affected by the reduced virtual address space.

TBA, TPC, TNPC, VA and PA watchpoint, and DMMU SFAR registers are 44-bits,

sign-extended to 64-bits on read accesses. No checks are done when these regis-

ters are written by software. It is the responsibility of privileged software to prop-

erly update these registers.

An out of range address during an instruction access causes an

instruction_access_exception trap if PSTATE.AM is not set.

If the target address of a JMPL or RETURN instruction is an out-of-range address

and PSTATE.AM is not set, a trap is generated with the PC = the address of the

JMPL or RETURN instruction and the trap type in the I-MMU SFSR register. This

instruction_access_exception trap is lower priority than other traps on the JMPL or

RETURN (illegal_instruction due to nonzero reserved fields in the JMPL or RE-

TURN, mem_address_not_aligned trap, or window_fill trap), because it really applies

to the target. The trap handler can determine the out-of-range address by decod-

ing the JMPL instruction from the code.

All other control transfer instructions trap on the PC of the target instruction

along with different status in the I-MMU SFSR register. Because the PC is sign-ex-

tended to 64 bits, the trap handler must adjust the PC value to compute the fault-

FFFF FFFF FFFF FFFF

FFFF F800 0000 0000

0000 0000 0000 0000

0000 07FF FFFF FFFF

Out of Range VA
(VA “Hole”)

FFFF F7FF FFFF FFFF

0000 0800 0000 0000
Sun Microelectronics
238

14. Implementation Dependencies
ing address by XORing ones into the upper 20 bits. See also Section 6.9.4, “I-/D-

MMU Synchronous Fault Status Registers (SFSR),” on page 58 and Section 6.9.5,

“I-/D-MMU Synchronous Fault Address Registers (SFAR),” on page 60.

When a trap occurs on the delay slot of a taken branch or call whose target is out-

of-range, or the last instruction below the VA hole, UltraSPARC records the fact

that nPC points to an out of range instruction. If the trap handler executes a

DONE or RETRY without saving nPC, the instruction_access_exception trap will be

taken when the instruction at nPC is executed. If nPC is saved and subsequently

restored by the trap handler, the fact that nPC points to an out of range instruc-

tion is lost. To guarantee that all out of range instruction accesses will cause

traps, software should not map addresses within 231 bytes of either side of the VA

hole as executable.

An out of range address during a data access will result in a data_access_exception
trap if PSTATE.AM is not set. Because the D-MMU SFAR contains only 44 bits,

the trap handler must decode the load or store instruction if the full 64-bit virtual

address is needed. See also Section 6.9.4, “I-/D-MMU Synchronous Fault Status

Registers (SFSR),” on page 58 and Section 6.9.5, “I-/D-MMU Synchronous Fault

Address Registers (SFAR),” on page 60.

14.1.7 TICK Register

UltraSPARC implements a 63-bit TICK counter. For the state of this register at re-

set, see Table 10-1, “Machine State After Reset and in RED_state,” on page 172.

NPT: Non-privileged Trap enable. If set, an attempt by non-privileged software

to read the TICK register causes a privileged_action trap. If clear,

nonprivileged software can read this register with the RDTICK

instruction. This register can only be written by privileged software. A

write attempt by nonprivileged software causes a privileged_action trap.

counter: 63-bit elapsed CPU clock cycle counter.

Note: TICK.NPT is set and TICK.counter is cleared after both a Power-On-Reset

(POR) and an Externally Initiated Reset (XIR).

Table 14-1 TICK Register Format

Bits Field Use RW

<63> NPT Non-privileged Trap enable RW

<62:0> counter Elapsed CPU clock cycle counter RW
Sun Microelectronics
239

UltraSPARC User’s Manual
14.1.8 Population Count Instruction (POPC)

The population count instruction is not directly executed in hardware; it is emu-

lated in software.

14.1.9 Secure Software

To establish an enhanced security environment, it may be necessary to initialize

certain processor states between contexts. Examples of such states are the con-

tents of integer and floating-point register files, condition codes, and state regis-

ters. See also Section 14.2.2, “Clean Window Handling (Impdep #102).

14.1.10 Address Masking (Impdep #125)

When PSTATE.AM=1, the value of the high-order 32-bits of the PC transmitted to

the specified destination register(s) by CALL, JMPL, RDPC, and on a trap is zero.

14.2 SPARC-V9 Integer Operations

14.2.1 Integer Register File and Window Control Registers (Impdep #2)

UltraSPARC implements an eight window 64-bit integer register file; that is,

NWINDOWS = 8. UltraSPARC truncates values stored in the CWP, CANSAVE,

CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This in-

cludes implicit updates to these registers by SAVE(D) and RESTORE(D) instruc-

tions. The upper two bits of these registers read as zero.

14.2.2 Clean Window Handling (Impdep #102)

SPARC-V9 introduced the concept of “clean window” to enhance security and in-

tegrity during program execution. A clean window is defined to be a register

window that contains either all zeroes or addresses and data that belong to the

current context. The CLEANWIN register records the number of available clean

windows.

When a SAVE instruction requests a window, and there are no more clean win-

dows, a clean_window trap is generated. System software must then initialize all

registers in the next available window(s) to zero before returning to the request-

ing context.
Sun Microelectronics
240

14. Implementation Dependencies
14.2.3 Integer Multiply and Divide

Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},

UDIV{cc}, UDIVX) are executed directly in hardware.

Multiplications are done 2 bits at a time with early exit when the final result is

generated. Divisions use a 1-bit non-restoring division algorithm.

Note: For best performance, the smaller of the two operands of a multiply

should be the rs1 operand.

14.2.4 Version Register (Impdep #2, 13, 101, 104)

Consult the product data sheet for the content of the Version Register for an im-

plementation. For the state of this register after resets, see Table 10-1, “Machine

State After Reset and in RED_state,” on page 172.

manuf: 16-bit manufacturer code, 001716 (TI JEDEC number), that identifies the

manufacturer of an UltraSPARC CPU.

impl: 16-bit implementation code, 001016, that uniquely identifies an

UltraSPARC-class CPU. Table 14-3 shows the VER.impl values for each

UltraSPARC model.

mask: 8-bit mask set revision number that identifies the mask set revision of this

UltraSPARC. This is subdivided into a 4 bit major mask number <31:28>

and a 4-bit minor mask number <27:24>. The major number starts at zero

Table 14-2 Version Register Format

Bits Field Use RW

<63:48> manuf Manufacturer identification R

<47:32> impl Implementation identification R

<31:24> mask Mask set version R

<23:16> Reserved — R

<15:8> maxtl Maximum trap level supported R

<7:5> Reserved — R

<4:0> maxwin Maximum number of windows of integer register file. R

Table 14-3 VER.impl Values by UltraSPARC Model

UltraSPARC-I UltraSPARC-II

VER.impl 001016 001116
Sun Microelectronics
241

UltraSPARC User’s Manual
and is incremented for each all-layer mask revision. The minor number

starts at zero for each major revision, and is incremented for each less-

than-all-layer mask revision.

maxtl: Maximum number of supported trap levels beyond level 0. This is the

same as the largest possible value for the TL register. For UltraSPARC,

maxtl=5.

maxwin: Maximum index number available for use as a valid CWP value. The

value is NWINDOWS–1; for UltraSPARC maxwin=7.

14.3 SPARC-V9 Floating-Point Operations

14.3.1 Subnormal Operands & Results; Non-standard Operation

UltraSPARC handles some cases of subnormal operands or results directly in

hardware and traps on the rest. In the trapping cases, an fp_exception_other (with

FSR.ftt=2, unfinished_FPop) trap is signalled and these operations are handled in

system software. The unfinished trapping cases are listed in Table 14-4, and

Table 14-5.

Because trapping on subnormal operands and results can be quite costly,

UltraSPARC supports the non-standard result option of the SPARC-V9 architec-

ture. If FSR.NS = 1, subnormal operands or results encountered in trapping cases

are flushed to zero and the unfinished_FPop floating-point trap type are not taken.

14.3.1.1 Subnormal Operands

If FSR.NS=1, the subnormal operands of these operations are replaced by zeroes

with the same sign. An inexact exception is signalled in this case, which causes

an fp_exception_ieee_754 trap if enabled by FSR.TEM. If FSR.NS=0, subnormal op-

erands generate traps according to Table 14-4 on page 243. ER is the biased expo-

nent of the result before rounding.
Sun Microelectronics
242

14. Implementation Dependencies
14.3.1.2 Subnormal Results

If FSR.NS=1, the subnormal results are replaced by zero with the same sign. Un-

derflow and inexact exceptions are signalled in this case. This will cause an

fp_exception_ieee_754 trap if enabled by FSR.TEM (only ufc will be set in FSR.cexc
when underflow trap is enabled, otherwise only nxc will be set when inexact trap

is enabled). If FSR.NS=0, then subnormal results generate traps according to

Table 14-5. For FDTOS and FADD, ER is the biased exponent of the result before

rounding. For multiply, ER is the biased sum of the exponents plus one. For di-

vide, ER is the biased difference of the exponents of the operands.

14.3.2 Overflow, Underflow, and Inexact Traps (Impdep #3, 55)

UltraSPARC implements precise floating-point exception handling. Underflow is

detected before rounding. Prediction of overflow, underflow and inexact traps for

divide and square root is used to simplify the hardware.

For divide, pessimistic prediction occurs when underflow/overflow can not be

determined from examining the source operand exponents. For divide and

square root, pessimistic prediction of inexact occurs unless one of the operands is

a zero, NAN or infinity. When pessimistic prediction occurs and the exception is

Table 14-4 Subnormal Operand Trapping Cases (NS=0)

Operations One Subnormal Operand
Two Subnormal

Operands

F(sd)TO(ix)

F(sd)TO(ds)

FSQRT(sd)

Unfinished trap always —

FADD/SUB(sd)

FSMULD

Unfinished trap always Unfinished trap always

FMUL(sd)

FDIV(sd)

Unfinished trap if no overflow and:

-25 < ER (SP);

-54 < ER (DP)

Unfinished trap always

Table 14-5 Subnormal Result Trapping Cases (NS=0)

Operations Trap

FDTOS

FADD/SUB(sd)

FMUL(sd)

Unfinished trap if:

-25 < ER < 1 (SP)

-54 < ER < 1 (DP)

FDIV(sd) Unfinished trap if:

-25 < ER ≤ 1 (SP)

-54 < ER ≤ 1 (DP)
Sun Microelectronics
243

UltraSPARC User’s Manual
enabled, an fp_exception_other (with FSR.ftt=2, unfinished_FPop) trap is generated.

System software will properly handle these cases and resume execution. If the ex-

ception is not enabled, the actual result status is used to update the aexec bits of

the fsr.

Note: Major performance degradation may be observed while running with the

inexact exception enabled.

14.3.3 Quad-Precision Floating-Point Operations (Impdep #3)

All quad-precision floating-point instructions, listed in Table 14-6, cause an

fp_exception_other (with FSR.ftt=3, unimplemented_FPop) trap. These operations are

emulated in system software.

14.3.4 Floating Point Upper and Lower Dirty Bits in FPRS Register

The FPRS_dirty_upper (DU) and FPRS_dirty_lower (DL) bits in the Floating-

Point Registers State (FPRS) Register are set when an instruction that modifies the

corresponding upper and lower half of the floating-point register file is dis-

patched. Floating-point register file modifying instructions include floating-point

operate, graphics, floating-point loads and block load instructions.

Table 14-6 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F{s,d}TOq Convert single-/double- to quad-precision floating-point

F{i,x}TOq Convert 32-/64-bit integer to quad-precision floating-point

FqTO{s,d} Convert quad- to single-/double-precision floating-point

FqTO{i,x} Convert quad-precision floating-point to 32-/64-bit integer

FCMP{E}q Quad-precision floating-point compares

FMOVq Quad-precision floating-point move

FMOVqcc Quad-precision floating-point move, if condition is satisfied

FMOVqr Quad-precision floating-point move if register match condition

FABSq Quad-precision floating-point absolute value

FADDq Quad-precision floating-point addition

FDIVq Quad-precision floating-point division

FdMULq Double- to quad-precision floating-point multiply

FMULq Quad-precision floating-point multiply

FNEGq Quad-precision floating-point negation

FSQRTq Quad-precision floating-point square root

FSUBq Quad-precision floating-point subtraction
Sun Microelectronics
244

14. Implementation Dependencies
The FPRS.DU and FPRS.DL may be set pessimistically, even though the instruc-

tion that modified the floating-point register file is nullified.

14.3.5 Floating-Point Status Register (FSR) (Impdep #13, 19, 22, 23, 24)

UltraSPARC supports precise-traps and implements all three exception fields

(TEM, cexc, and aexc) conforming to IEEE Std 754-1985. The state of the FSR after

reset is documented in Table 10-1, “Machine State After Reset and in RED_state,”

on page 172.

u: Unused field, read as 0.

Note: The LD{X}FSR instruction should write zeroes to the u fields; undefined

values (read as 0) of these fields are stored by the ST{X}FSR instruction.

fcc3, fcc2, fcc1, fcc0: Four sets of 2-bit floating-point condition codes, which are

modified by the FCMP{E} (and LD{X}FSR) instructions. The FBfcc,

FMOVcc, and MOVcc instructions use one of these condition code sets to

determine conditional control transfers and conditional register moves.

Note: fcc0 is the same as the fcc in SPARC-V8.

Table 14-7 Floating-Point Status Register Format

Bits Field Use RW

<63:38> Reserved — R

<37:36> fcc3 Floating-point condition code (set 3) RW

<35:34> fcc2 Floating-point condition code (set 2) RW

<33:32> fcc1 Floating-point condition code (set 1) RW

<31:30> RD Rounding direction RW

<29:28> u Unused R

<27:23> TEM IEEE-754 trap enable mask RW

<22> NS Non-standard floating-point results R

<21:20> Reserved — R

<19:17> ver FPU version number R

<16:14> ftt Floating-point trap type RW

<13:> qne Floating-point deferred-trap queue (FQ) not empty RW

<12> u Unused R

<11:10> fcc0 Floating-point condition code (set 0) RW

<9:5> aexc Accumulated outstanding exceptions RW

<4:0> cexc Current outstanding exceptions RW
Sun Microelectronics
245

UltraSPARC User’s Manual
RD: IEEE Std 754-1985 Rounding Direction.

TEM: 5-bit trap enable mask for the IEEE-754 floating-point exceptions. If a

floating-point operate instruction produces one or more exceptions, the

corresponding cexc/aexc bits are set and an fp_exception_ieee_754 (with

FSR.ftt=1, IEEE_754_exception) exception is generated.

NS: When this field = 0, UltraSPARC produces IEEE-754 compatible results.

In particular, subnormal operands or results may cause a trap. When this

field=1, UltraSPARC may deliver a non-IEEE-754 compatible result. In

particular, subnormal operands and results may be flushed to zero. See

Table 14-4, “Subnormal Operand Trapping Cases (NS=0),” on page 243

and Table 14-5, “Subnormal Result Trapping Cases (NS=0),” on page 243.

ver: This field identifies a particular implementation of the UltraSPARC FPU

architecture.

ftt: The 3-bit floating point trap type field is set whenever an floating-point

instruction causes the fp_exception_ieee_754 or fp_exception_other traps.

Note: UltraSPARC neither detects nor generates the following trap types

directly in hardware: hardware_error, invalid_fp_register.

Table 14-8 Floating-Point Rounding Modes

RD Round Toward

0 Nearest (even if tie)

1 0

2 +∞
3 –∞

Table 14-9 Floating-Point Trap Type Values

ftt Floating-Point Trap Type Trap Signalled

0 None —

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop fp_exception_other

3 unimplemented_FPop fp_exception_other

4 sequence_error fp_exception_other

5 hardware_error —

6 invalid_fp_register —

7 reserved —
Sun Microelectronics
246

14. Implementation Dependencies
Note: UltraSPARC does not contain an FQ. An attempt to read the FQ with a

RDPR instruction causes an illegal_instruction trap.

Note: SPARC-V8-compatible programs should set the least significant bit of the

floating-point register number to zero for all double-precision instructions.

Violation of this SPARC-V8 architectural constraint may result in unexpected

program behavior.

qne: This bit is not used, because UltraSPARC implements precise floating-

point exceptions.

aexc: 5-bit accrued exception field accumulates IEEE 754 exceptions while

floating-point exception traps are disabled (that is, FSR.TEM=0).

cexc: 5-bit current exception field indicates the most recently generated IEEE

754 exceptions.

14.4 SPARC-V9 Memory-Related Operations

14.4.1 Load/Store Alternate Address Space (Impdep #5, 29, 30)

Supported ASI accesses are listed in Section 8.3, “Alternate Address Spaces,” on

page 146.

14.4.2 Load/Store ASR (Impdep #6,7,8,9, 47, 48)

Supported ASRs are listed in Section 8.4, “Ancillary State Registers,” on page 156.

14.4.3 MMU Implementation (Impdep #41)

UltraSPARC memory management is based on software-managed instruction and

data Translation Lookaside Buffers (TLBs) and in-memory Translation Storage

Buffers (TSBs) backed by a Software Translation Table. See Chapter 4, “Overview

of the MMU,” on page 21 for more details.

14.4.4 FLUSH and Self-Modifying Code (Impdep #122)

FLUSH is needed to synchronize code and data spaces after code space is modi-

fied during program execution. FLUSH is described in Section 5.3.2, “Memory

Synchronization: MEMBAR and FLUSH,” on page 32. On UltraSPARC, the
Sun Microelectronics
247

UltraSPARC User’s Manual
FLUSH effective address is translated by the D-MMU. As a result, FLUSH can

cause a data_access_exception (the page is mapped with side effects or no fault

only bits set, virtual address out of range, or privilege violation) or a

data_access_MMU_miss trap. For a data_access_exception, the trap handler can de-

code the FLUSH instruction, and perform a Done to be consistent with the nor-

mal SPARC-V9 behavior of no traps on FLUSH. For a data_access_MMU_miss, the

trap handler should do the normal TLB miss processing and perform a RETRY if

the page can be mapped in the TLB, otherwise perform a DONE.

Note: SPARC-V9 specifies that the FLUSH instruction has no latency on the

issuing processor. In other words, a store to instruction space prior to the FLUSH

instruction is visible immediately after the completion of FLUSH. MEMBAR

#StoreStore is required to ensure proper ordering in multi-processing system

when the memory model is not TSO. When a MEMBAR #StoreStore , FLUSH

sequence is performed, UltraSPARC guarantees that earlier code modifications

will be visible across the whole system.

14.4.5 PREFETCH{A} (Impdep #103, 117)

For UltraSPARC-I, PREFETCH{A} instructions with fcn=0..4 are treated as NOPs.

For UltraSPARC-II, PREFETCH{A} instructions with fcn=0..4 have the following

meanings:

PREFETCH{A} instructions with fcn=5..15 cause an illegal_instruction trap.

PREFETCH{A} instructions with fcn=16..31 are treated as NOPs.

14.4.6 Non-faulting Load and MMU Disable (Impdep #117)

When the data MMU is disabled, accesses are assumed to be non-cacheable

(TTE.PC=0) and with side-effect (TTE.E=1). Non-faulting loads encountered

when the MMU is disabled cause a data_access_exception trap with SFSR.FT=2

(speculative load to page with side-effect attribute).

Table 14-10 PREFETCH{A} Variants (UltraSPARC-II)

fcn Prefetch Function Action

0 Prefetch for several reads

Generate P_RDS_REQ if desired line is not present in E-Cache1 Prefetch for one read

2 Prefetch page

3 Prefetch for several writes Generate P_RDO_REQ if desired line is not present in E-Cache in

either E or M state4 Prefetch for one write
Sun Microelectronics
248

14. Implementation Dependencies
14.4.7 LDD/STD Handling (Impdep #107, 108)

LDD and STD instructions are directly executed in hardware.

Note: LDD/STD are deprecated in SPARC-V9. In UltraSPARC it is more

efficient to use LDX/STX for accessing 64-bit data. LDD/STD take longer to

execute than two 32-/64-bit loads/stores.

14.4.8 FP mem_address_not_aligned (Impdep #109, 110, 111, 112)

LDDF{A}/STDF{A} cause an LDDF/STDF_ mem_address_not_aligned trap if the ef-

fective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an

illegal_instruction trap.

14.4.9 Supported Memory Models (Impdep #113, 121)

UltraSPARC supports all three memory models (TSO, PSO, RMO). See Section

15.2, “Supported Memory Models,” on page 256.

14.4.10 I/O Operations (Impdep #118, 123)

I/O spaces and their accesses are specified in Section 5.3.7, “I/O and Accesses

with Side-effects,” on page 38.

14.5 Non-SPARC-V9 Extensions

14.5.1 Per-Processor TICK Compare Field of TICK Register

The SPARC-V9 TICK register is used for fine-grain measurements of time in pro-

cessor cycles. The TICK Compare field (TICK_CMPR) of the TICK Register pro-

vides added functionality for thread scheduling on a per-processor basis. Non

privileged accesses to this register will cause a privileged_opcode trap. See

Table 10-1, “Machine State After Reset and in RED_state,” on page 172 for a list of

resets states.
Sun Microelectronics
249

UltraSPARC User’s Manual
INT_DIS: If set, TICK_INT interrupt generation is disabled.

TICK_CMPR: Writes to the TICK_Compare Register load a value for comparison

to the TICK register bits <62:0>. When these values match and

(INT_DIS=0) a TICK_INT is posted in the SOFTINT register. This has the

effect of posting a level-14 interrupt to the processor when the processor

has (PSTATE.PIL < D16) and (PSTATE.IE=1). The level-14 interrupt

handler must check both SOFTINT<14> and TICK_INT. This function is

independent on each processor.

14.5.2 Cache Sub-system

UltraSPARC contains one or more levels of caches. The cache sub-system archi-

tecture is described in Chapter 3, “Cache Organization.”

14.5.3 Memory Management Unit

UltraSPARC implements a multi-level memory management scheme. The MMU

architecture is described in Chapter 4, “Overview of the MMU.”

14.5.4 Error Handling

UltraSPARC implements a set of programmer-visible error and exception regis-

ters. These registers and their usage are described in Chapter 11, “Error Han-

dling.”

14.5.5 Block Memory Operations

UltraSPARC supports 64-byte block memory operations utilizing a block of eight

double-precision floating point registers as a temporary buffer. See Section 13.6.4,

“Block Load and Store Instructions,” on page 230.

Table 14-11 TICK_compare Register Format

Bits Field Use RW

<63> INT_DIS TICK_INT interrupt enable RW

<62:0> TICK_CMPR Compare value for TICK interrupts RW
Sun Microelectronics
250

14. Implementation Dependencies
14.5.6 Partial Stores

UltraSPARC supports 8-/16-/32-bit partial stores to memory. See Section 13.6.1,

“Partial Store Instructions,” on page 225.

14.5.7 Short Floating-Point Loads and Stores

UltraSPARC supports 8-/16-bit loads and stores to the floating-point registers.

See Section 13.6.2, “Short Floating-Point Load and Store Instructions,” on page

227.

14.5.8 Atomic Quad-load

UltraSPARC supports 128-bit atomic load operations to a pair of integer registers.

See Section 13.6.3, “Atomic Quad Load,” on page 229.

14.5.9 PSTATE Extensions: Trap Globals

UltraSPARC supports two additional sets of eight 64-bit global registers: inter-

rupt globals and MMU globals. These additional registers are called the “trap

globals.” Two 1-bit fields, PSTATE.IG and PSTATE.MG, have been added to the

PSTATE register to select which set of global registers to use. The PSTATE.IG and

PSTATE.MG bits are also stored with the rest of the PSTATE register in the

TSTATE register when a trap is taken. See Chapter 9, “Interrupt Handling” for a

description of the trap global registers. See Table 10-1, “Machine State After Reset

and in RED_state,” on page 172 for the states of these bits on reset.

Table 14-12 Extended PSTATE Register

Bits Field Use RW

<11> IG Interrupt globals enable RW

<10> MG MMU globals enable RW

<9> CLE Current little endian enable RW

<8> TLE Trap little endian enable RW

<7:6> MM Memory Model RW

<5> RED RED_state enable RW

<4> PEF Floating point enable RW

<3> AM 32-bit address mask enable RW

<2> PRIV Privileged mode RW

<1> IE Interrupt enable RW

<0> AG Alternate global enable RW
Sun Microelectronics
251

UltraSPARC User’s Manual
Note: Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a

JMPL instruction is not recommended. A noncacheable instruction prefetch may

be made to the JMPL target, which may be in a cacheable memory area. This may

result in a bus error on some systems, which causes an instruction_access_error
trap. The trap can be masked by setting the NCEEN bit in the ESTATE_ERR_EN

register to zero, but this will mask all non-correctable error checking. Exiting

RED_state with DONE or RETRY avoids this problem.

UltraSPARC provides Interrupt and MMU global register sets in addition to the

two global register sets specified by SPARC-V9. The currently active set of global

registers is specified by the AG, IG and MG bits according to Table 14-13,

“PSTATE Global Register Selection Encoding,” on page 252.

Note: The IG and MG fields are saved on the trap stack along with the rest of

the PSTATE register.

When an interrupt_vector trap (trap type=6016) is taken, UltraSPARC selects the In-

terrupt Global registers by setting IG and clearing AG and MG. When a

fast_instruction_access_MMU_miss, fast_data_access_MMU_miss,

fast_data_access_protection, data_access_exception, or instruction_access_exception trap

is taken, UltraSPARC selects the MMU Global Registers by setting MG and clear-

ing AG and IG. When any other type of trap occurs, UltraSPARC selects the Al-

ternate Global Registers by setting AG and clearing IG and MG. Note that global

register selection is the same for traps that enter RED_state.

Executing a DONE or RETRY instruction restores the previous {AG, IG, MG} state

before the trap is taken. These three bits can also be set or cleared by writing to

the PSTATE register with a WRPR instruction.

Table 14-13 PSTATE Global Register Selection Encoding

AG IG MG Globals in Use

0 0 0 Normal

0 0 1 MMU

0 1 0 Interrupt

0 1 1 Reserved

1 0 0 Alternate

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved
Sun Microelectronics
252

14. Implementation Dependencies
Note: The AG, IG, and MG bits are mutually exclusive. Attempting to set a

reserved encoding using a WRPR to PSTATE will generate an illegal_instruction
trap. UltraSPARC does not check for a reserved encoding in TSTATE. This will

cause undefined results when a DONE or RETRY is executed.

14.5.10 Interrupt Vector Handling

Processors and I/O devices can interrupt a selected processor by assembling and

sending an interrupt packet consisting of three 64-bit interrupt data words. This

allows hardware interrupts and cross calls to have the same hardware mecha-

nism and to share a common software interface for processing. Interrupt vectors

are described in Section 9.1, “Interrupt Vectors,” on page 161.

14.5.11 Power Down Support and the SHUTDOWN Instruction

UltraSPARC supports power down mode to reduce power requirements during

idle periods. A privileged instruction, SHUTDOWN, has been added to facilitate

a software-controlled power down of the CPU and system. Power down support

is described in Appendix C, “Power Management,” on 327. The SHUTDOWN in-

struction is described in Section 13.2, “SHUTDOWN,” on page 195

14.5.12 UltraSPARC Instruction Set Extensions (Impdep #106)

The UltraSPARC CPU extends the standard SPARC-V9 instruction set with three

new classes of instructions. They have been designed to support power down

mode (see Section 13.2, “SHUTDOWN,” on page 195”), enhance graphics func-

tionality (see Section 13.5, “Graphics Instructions”), and improve the efficiency of

memory accesses (see Section 13.6, “Memory Access Instructions).

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution

cause an illegal_instruction trap.

14.5.13 Performance Instrumentation

UltraSPARC performance instrumentation is described in Section B.4, “Perfor-

mance Instrumentation Counter Events,” on page 321.
Sun Microelectronics
253

UltraSPARC User’s Manual
14.5.14 Debug and Diagnostics Support

UltraSPARC support for debug and diagnostics is described in Appendix A,

“Debug and Diagnostics Support,” on page 303.
Sun Microelectronics
254

SPARC-V9 Memory Models 15
15.1 Overview

SPARC-V9 defines the semantics of memory operations for three memory mod-

els. From strongest to weakest, they are Total Store Order (TSO), Partial Store Or-

der (PSO), and Relaxed Memory Order (RMO). The differences in these models

lie in the freedom an implementation is allowed in order to obtain higher perfor-

mance during program execution. The purpose of the memory models is to spec-

ify any constraints placed on the ordering of memory operations in uniprocessor

and shared-memory multi-processor environments. UltraSPARC supports all

three memory models.

Although a program written for a weaker memory model potentially benefits

from higher execution rates, it may require explicit memory synchronization in-

structions to function correctly if data is shared. MEMBAR is a SPARC-V9 memo-

ry synchronization primitive that enables a programmer to explicitly control the

ordering in a sequence of memory operations. Processor consistency is guaran-

teed in all memory models.

The current memory model is indicated in the PSTATE.MM field. It is unaffected

by normal traps, but is set to TSO (PSTATE.MM=0) when the processor enters

RED_state.

A memory location is identified by an 8-bit Address Space Identifier (ASI) and a

64-bit (virtual) address. The 8-bit ASI may be obtained from a ASI register or in-

cluded in a memory access instruction. The ASI is used to distinguish among and

provide an attribute to different 64-bit address spaces. For example, the ASI is

used by the UltraSPARC MMU and memory access hardware to control virtual-

to-physical address translations, access to implementation-dependent control and
Sun Microelectronics
255

UltraSPARC User’s Manual
data registers, and for access protection. Attempts by non-privileged software

(PSTATE.PRIV=0) to access restricted ASIs (ASI<7>=0) cause a privileged_action
trap.

Memory is logically divided into real memory (cached) and I/O memory (non-

cached with and without side-effects) spaces. Real memory spaces can be access-

ed without side-effects. For example, a read from real memory space returns the

information most recently written. In addition, an access to real memory space

does not result in program-visible side-effects. In contrast, a read from I/O space

may not return the most recently written information and may result in program-

visible side-effects.

15.2 Supported Memory Models

The following sections contain brief descriptions of the three memory models

supported by UltraSPARC. These definitions are for general illustration. Detailed

definitions of these models can be found in The SPARC Architecture Manual, Ver-
sion 9. The definitions in the following sections apply to system behavior as seen

by the programmer. A description of MEMBAR can be found in Section 5.3.2,

“Memory Synchronization: MEMBAR and FLUSH,” on page 32

Note: Stores to UltraSPARC Internal ASIs, block loads, and block stores are

outside of the memory model; that is, they need MEMBARs to control ordering.

See Section 5.3.8, “Instruction Prefetch to Side-Effect Locations,” on page 38 and

Section 13.6.4, “Block Load and Store Instructions,” on page 230.

Note: Atomic load-stores are treated as both a load and a store and can only be

applied to cacheable address spaces.

15.2.1 TSO

UltraSPARC implements the following programmer-visible properties in Total

Store Order (TSO) mode:

• Loads are processed in program order; that is, there is an implicit MEMBAR

#LoadLoad between them.

• Loads may bypass earlier stores. Any such load that bypasses such earlier

stores must check (snoop) the store buffer for the most recent store to that

address. A MEMBAR #Lookaside is not needed between a store and a

subsequent load at the same noncacheable address.
Sun Microelectronics
256

15. SPARC-V9 Memory Models
• A MEMBAR #StoreLoad must be used to prevent a load from bypassing a

prior store, if Strong Sequential Order is desired.

• Stores are processed in program order.

• Stores cannot bypass earlier loads.

• Accesses with the E-bit set (that is, those having side-effects) are all strongly

ordered with respect to each other.

• An E-Cache update is delayed on a store hit until all outstanding stores reach

global visibility. For example, a cacheable store following a noncacheable store

is not globally visible until the noncacheable store has reached global

visibility; there is an implicit MEMBAR #MemIssue between them.

15.2.2 PSO

UltraSPARC implements the following programmer-visible properties in Partial

Store Order (PSO) mode:

• Loads are processed in program order; that is, there is an implicit MEMBAR

#LoadLoad between them.

• Loads may bypass earlier stores. Any such load that bypasses such earlier

stores must check (snoop) the store buffer for the most recent store to that

address. For SPARC-V9 compatibility, a MEMBAR #Lookaside should be

used between a store and a subsequent load to the same non-cacheable

address.

• Stores cannot bypass earlier loads.

• Stores are not ordered with respect to each other. A MEMBAR must be used

for stores if stronger ordering is desired. A MEMBAR #MemIssue is needed

for ordering of cacheable after non-cacheable stores.

• Non-cacheable accesses with the E-bit set (that is, those having side-effects)

are all strongly ordered with respect to each other, but not with non-E-bit

accesses.

Note: The behavior of partial stores to noncacheable addresses (pages with the

TTE.CP=0) is dependent on the system and I/O device implementation.

UltraSPARC generates a P_NCWR_REQ operation with a byte mask

corresponding to the rs2 mask of the partial store instruction. If the system

interconnect or I/O device is unable to perform the write operation of the bytes

specified by the byte mask, an error is not signaled back to the processor.
Sun Microelectronics
257

UltraSPARC User’s Manual
15.2.3 RMO

UltraSPARC implements the following programmer-visible properties in Relaxed

Memory Order (RMO) mode:

• There is no implicit order between any two memory references, either

cacheable or non-cacheable, except that non-cacheable accesses with the E-bit

set (that is, those having side-effects) are all strongly ordered with respect to

each other.

• A MEMBAR must be used between cacheable memory references if stronger

order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable

after non-cacheable accesses. A MEMBAR #Lookaside should be used

between a store and a subsequent load at the same noncacheable address.
Sun Microelectronics
258

Section IV — Producing Optimized Code
16. Code Generation Guidelines ... 261

17. Grouping Rules and Stalls ... 281
Sun Microelectronics
259

UltraSPARC User’s Manual
Sun Microelectronics
260

Code Generation Guidelines 16
16.1 Hardware / Software Synergy
One of the goals set for UltraSPARC was for the processor to execute SPARC-V8

binaries efficiently, providing around three times the performance of existing ma-

chines running the same code. A significantly larger performance gain can be ob-

tained if the code is re-compiled using a compiler specifically designed for

UltraSPARC. Several features are provided on UltraSPARC that can only be taken

advantage of by using modern compiler technology. This technology was not

available previously, mainly because the hardware support was not sufficient to

justify its development.

16.2 Instruction Stream Issues

16.2.1 UltraSPARC Front End

The front end of the processor consists of the Prefetch Unit, the I-Cache, the next

field RAM, the branch and set prediction logic, and the return address stack. The

role of the front end is to supply as many valid instructions as possible to the

grouping logic and eventually to the functional units (the ALUs, floating-point

adder, branch unit, load/store pipe, etc.).
Sun Microelectronics
261

UltraSPARC User’s Manual
16.2.2 Instruction Alignment

16.2.2.1 I-Cache Organization

The 16 Kb I-Cache is organized as a 2-way set associative cache, with each set

containing 256 eight-instruction lines (Figure 16-1). The 14 bits required to access

any location in the I-Cache are composed of the 13 least significant address bits

(since the minimum page size is 8K, these 13 bits are always part of the page off-

set and need not be translated) and 1 bit used to predict the associativity number

(way) in which instructions reside. Out of a line of 8 instructions, up to 4 instruc-

tions are sent to the instruction buffer, depending on the address. If the address

points to one of the last three instructions in the line, only that instruction and

the ones (0-2) until the end of the line are selected (for simplicity and timing con-

siderations, hardware support for getting instructions from two adjacent lines

was not included). Consequently, on average for random accesses, 3.25 instruc-

tions are fetched from the I-Cache. For sequential accesses, the fetching rate (4 in-

structions per cycle) equals or exceeds the consuming rate of the pipeline (up to 4

instructions per cycle).

Figure 16-1 I-Cache Organization

16.2.2.2 Branch Target Alignment

Given the restriction mentioned above regarding the number of instructions

fetched from an I-Cache access, it is desirable to align branch targets so that

enough instructions will be fetched to match the number of instructions issued in

the first group of the branch target. For instance, if the compiler scheduler indi-

cates that the target can only be grouped with one more instruction, the target

should be placed anywhere in the line except in the last slot, since only one in-

32 bytes

8 instructions

SET 0

SET 1

256 LINEs
Sun Microelectronics
262

16. Code Generation Guidelines
struction would be fetched in that case. If the target is accessed from more than

one place, it should be aligned so that it accommodates the largest possible

group. If accesses to the I-Cache are expected to miss, it may be desirable to align

targets on a 16-byte (even 32-byte) boundary so that 4 instructions are forwarded

to the next stage. Such an alignment can at least assure that 4 (8 for 32-byte align-

ment) instructions can be processed between cache misses, assuming that the

code does not branch out of the sequence of instructions (which is generally not
the case for integer programs).

16.2.2.3 Impact of the Delay Slot on Instruction Fetch

If the last instruction of a line is a branch, the next sequential line in the I-Cache

must be fetched even if the branch is predicted taken, since the delay slot must be

sent to the grouping logic. This leads to inefficient fetches, since an entire

E-Cache access must be dedicated to fetching the missing delay slot. Take care

not to place delayed CTIs (control transfer instructions) that are predicted taken at

the end of a cache line.

16.2.2.4 Instruction Alignment for the Grouping Logic

UltraSPARC can execute up to four instructions per cycle. The first three instruc-

tions in a group occupy slots that in most cases are interchangeable with respect

to resources. Only special cases of instructions that can only be executed in IEU1

followed by IEU0 candidates violate this interchangeability (described in Section

17.5, “Integer Execution Unit (IEU) Instructions,” on page 284). The fourth slot

can only be used for PC-based branches or for floating-point instructions. Conse-

quently, in order to get the most performance out of UltraSPARC, the code

should be organized so that either a floating-point operation (FPOP) or a branch

is aligned with the fourth slot. For floating-point code, it should be relatively

easy for the compiler to take advantage of the added execution bandwidth pro-

vided by the fourth slot. For integer code, aligning the branch so that it is issued

fourth in a group must be balanced with other factors that may be more impor-

tant, such as not placing a branch at the end of a cache line. Moreover if depen-

dency analysis shows that a group of four instructions could be issued, but the

fourth instruction is not a branch or an FPop while one of the first three is a

branch, the compiler must evaluate the following trade-off before switching the

two instructions (assuming no data dependency):

• Moving the fourth instruction ahead of the branch (cross-block scheduling)

and generating possible compensation code for the alternate path.
Sun Microelectronics
263

UltraSPARC User’s Manual
• Breaking the group and scheduling the ALU instruction with the next group.

Notice that this may not lengthen the critical path (in terms of number of

cycles executed) if the next group can accommodate this extra instruction

without adding any new group.

16.2.2.5 Impact of Instruction Alignment on PDU

There is one branch prediction entry for every two instructions in the I-Cache.

Each entry, consisting of a two-bit field, indicates if the branch is predicted taken

or not-taken (the state machine is described in Section 16.2.6). In addition to the

branch prediction field, there is a next field associated with every four instruc-

tions. The next field contains the index of the line and the associativity number

(or way) of the line that should be fetched next. For sequential code, the next field

points to the next line in the I-Cache. If a predicted taken branch is among the

four instructions, the next field contains the index of the target of the branch.

The following cases represent situations when the prediction bits and/or the next

field do not operate optimally:

1. When the target of a branch is word 1 or word 3 of an I-Cache line

(Figure 16-2) and the fourth instruction to be fetched (instruction 4 and 6

respectively) is a branch, the branch prediction bits from the wrong pair of

instructions are used.

Figure 16-2 Odd Fetch to an I-Cache Line

2. If a group of four instructions (instructions 0-3 or instructions 4-7) contains

two branches and can be entered at a different position than the beginning

of the group (other than instruction 0 and 4 respectively), the next field will

contain the update from the latest branch taken in this group of four

instructions, which may not be the one associated with the branch of

interest (Figure 16-3).

Figure 16-3 Next Field Aliasing Between Two Branches

0 1 2 3 4 5 6 7

Odd Fetches

Next FieldBranch Branch

Entry Point Entry Point
Sun Microelectronics
264

16. Code Generation Guidelines
3. Since there is one set of prediction bits for every two instructions, it is

possible to have two branches (a CTI couple) sharing prediction bits.

Under normal circumstances, the bits are maintained correctly; however,

the bits may be updated based on the wrong branch if the second branch in

the CTI couple is the target of another branch (Figure 16-4).

Figure 16-4 Aliasing of Prediction Bits in a Rare CTI Couple Case

As stated in Chapter 17, “Grouping Rules and Stalls,” if the address of the in-

structions in a group cross a 32-byte boundary, an implicit branch is “forced” be-

tween instructions at address 31 and 32 (low order bits). That rule has a

performance impact only if a branch is in that specific group. Care should be tak-

en not to place a branch in a group that crosses this boundary. Figure 16-5 shows

an example of this rule. A group containing instructions I0 (branch), I1, I2, and I3

will be broken, because an artificial branch is forced after address 31 and there is

already a branch in the group.

Figure 16-5 Artificial Branch Inserted after a 32-byte Boundary

16.2.3 I-Cache Timing

If accesses to the I-Cache hit, the pipeline will rarely starve for instructions. Only

in pathological cases will the PDU be unable to provide a sufficient number of in-

structions to keep the functional units busy. For example, a taken branch to a tak-

en branch sequence without any instructions between the branches (except for

the delay slot) could only be executed at a peak rate of two instructions per cycle.

Otherwise, up to 4 instructions are sent to the D Stage to be decoded and eventu-

ally dispatched in the G Stage and executed starting in the E Stage.

An I-Cache miss does not necessarily result in bubbles being inserted into the

pipeline. Part of the I-Cache miss processing, or even all of it, can be overlapped

with the execution of instructions that are already in the instruction buffer and

are waiting to be grouped and executed. Moreover, since the operation of the

Branch Branch Prediction

Entry Point

I3 I1 I2 I3

..30 ..31 ..0 ..1 ..2

Group Break Forced

Branch
Sun Microelectronics
265

UltraSPARC User’s Manual
PDU is somewhat separated from the rest of the pipeline, the I-Cache miss may

have occurred when the pipeline was already stalled (for example, due to a

multi-cycle integer divide, floating-point divide dependency, dependency on load

data that missed the D-Cache, etc.). This means that the miss (or part of it) may

be transparent to the pipeline.

When an I-Cache miss is detected, normal instruction fetching is disabled and a

request is sent to the E-Cache for the line that is missing in the I-Cache. A full line

of 8 instructions (32 bytes) is brought into the processor in two parts (the inter-

face to the E-Cache is 16-bytes wide). The critical part (that is, the 16 bytes con-

taining the instruction that caused the miss) is brought in first. An I-Cache miss

adds 5 cycles relative to the time it would take for an I-Cache hit (assuming that

there is no conflict for the arbitration of the E-Cache bus). If a predicted taken

branch is in the second 16-byte block brought into the I-Cache, there will be a one

cycle delay before the next fetch (this is the time needed to compute the next ad-

dress).

Because of the possibility of stalling the processor for 6 cycles in the case when

the pipeline is waiting for new instructions, it is desirable to try to make routines

fit in the I-Cache and avoid hot spots (collisions). UltraSPARC provides instru-

mentation to profile a program and detect if instruction accesses generate a cache

miss or a cache hit. For example, one can program performance counters to mon-

itor I-Cache accesses and I-Cache misses. Then, by checkpointing the counters be-

fore and after a large section of code, combined with profiling the section of code,

one can determine if the frequently executed functions generally hit or miss the

I-Cache. Instrumentation can be used in a similar manner to determine if a trap

handler generally resides in the I-Cache or causes a cache miss.

16.2.4 Executing Code Out of the E-Cache

When frequently executed routines do not fit in the I-Cache, it is possible to orga-

nize the code so that the main routines reside in the much larger E-Cache and do

not significantly affect the execution time. As an example we look at fpppp. Of the

fourteen floating-point programs in SPECfp92, fpppp shows the highest I-Cache

miss rate (about 21%) per cache access, or about 6.0% per instruction. For com-

parison, the next highest is doduc with about a 3% miss per cache access, 1% per

instruction. Even though the I-Cache miss rate is significant, UltraSPARC is bare-

ly affected by it (the impact is on CPI only 0.0084). The reasons why it performs

so well are:

• The code is organized as a large sequential block.

• Branches are predicted very well (over 90%).
Sun Microelectronics
266

16. Code Generation Guidelines
• The instruction buffer almost always contains several instructions when an

I-Cache miss occurs (an average of about 6.6).

• The instruction buffer is filled faster (up to 4 instructions per cycle) than it is

emptied.

All these factors contribute to reducing the apparent I-Cache miss latency from 6

cycles (assuming an E-Cache hit) to 0.14 cycles on average for fpppp; that is, on

average, the pipeline is stalled for 0.14 cycles when an I-Cache miss occurs.

The effectiveness of the instruction buffer and the prefetcher on fpppp demon-

strated that techniques (such as loop unrolling) that create large sequential blocks

of code can be used efficiently on UltraSPARC, even if these blocks do not fit in

the I-Cache. On the other hand, for code properly scheduled to take advantage of

the four issue slots on UltraSPARC, the rate of instruction “consumption” may

easily exceed the rate of instruction fetching, thus making I-Cache misses more

apparent.

16.2.5 uTLB and iTLB Misses

The one-entry uTLB contains the virtual page number and the associated physical

page number of the line accessed last. If the line currently accessed is to the same

page, the instructions from that line are simply forwarded to the next stage. If the

line is from a different virtual page, the translation is obtained from the iTLB a

cycle later. The cost of crossing a page boundary is thus one cycle (the smallest

possible page size, 8 Kbytes, is assumed). This may or may not translate into a

one cycle penalty for the whole processor. For a tight loop with code spanning

over two pages, this cost may be significant, especially if the instruction buffer is

empty at the time of the page crossing. For this reason, it is desirable to position

short loops within a page (avoid page crossing).

An iTLB miss is handled by software through the use of the TSB, and takes about

32 cycles. Consequently, an iTLB miss may be very costly in terms of idle proces-

sor cycles. In order to minimize the frequency of iTLB misses, UltraSPARC pro-

vides a large number of entries (64) in the iTLB and allows pages as large as

4Mbytes to be used. Nonetheless, techniques that allocate pages based on profil-

ing are encouraged to further decrease the iTLB miss cost.

16.2.6 Branch Prediction

UltraSPARC predicts the outcome of branches and fetches the next instructions

likely to be executed based on that outcome. While this is all done dynamically in

hardware, the compiler has an impact on the initialization of the state machine.
Sun Microelectronics
267

UltraSPARC User’s Manual
The static bit provided by BPcc and FBPfcc instructions is used to set the state

machine in either the likely taken state or the likely not taken state (Figure 16-6).

For branches without prediction (Bicc, FBfcc), UltraSPARC initializes the state

machine to likely not taken. Notice that a branch initialized to likely taken does

not produce a correct next field for the immediately following I-Cache fetch, since

it takes one extra cycle to generate the correct address (branch offset added to the

PC). This results in two lost cycles for fetching instructions, which does not nec-

essarily lead to a pipeline stall. This penalty is much less than the mispredicted

branch penalty (4 cycles) that would occur if the branch prediction bit was al-

ways ignored and a static prediction was used (e.g. always taken). The state ma-

chine representing the algorithm used for branch prediction is represented in

Figure 16-6. (Note: This figure is identical to Figure A-15.)

Figure 16-6 Dynamic Branch Prediction State Diagram

For loops in steady state, the algorithm is designed so that it requires two mis-

predictions in order for the prediction to be changed from taken to not taken.

Each loop exit will thus cause a single misprediction (versus two for a one-bit dy-

namic scheme).

16.2.6.1 Impact of the Annulled Slot

Grouping rules in Chapter 17, “Grouping Rules and Stalls,” describe how

UltraSPARC handles instructions following an annulling branch. The key things

to keep in mind regarding these instructions are:

1. Avoid scheduling multicycle instructions in the delay slot (for example,

IMUL, IDIV, etc.).

PT/ANT

PT/AT PNT/ATST LT LNT SNTPT,AT

PT/ANT

PNT/AT

PNT/ANT
PNT/ANT

Initialization

PT: Predicted Taken
PNT: Predicted Not Taken
AT: Actual Taken
ANT: Actual Not Taken

ST: Strongly Taken
LT: Likely Taken
SNT: Strongly Not Taken
LNT: Likely Not Taken
Sun Microelectronics
268

16. Code Generation Guidelines
2. Avoid scheduling long latency instructions such as FDIV if the branch is

predicted to be not-taken a significant portion of the time (since they affect

the timing of the non-taken stream).

3. Avoid scheduling an instruction that would stall dispatching due to a load-

use dependency.

4. Avoid scheduling WR(PR, ASR), SAVE, SAVED, RESTORE, RESTORED,

RETURN, RETRY, and DONE in the delay slot and in the first three groups

following an annulling branch.

16.2.6.2 Conditional Moves vs. Conditional Branches

The MOVcc and MOVR instructions provide an alternative to conditional branch-

es for executing short code segments. UltraSPARC differentiates the two as fol-

lows:

• Conditional branches: the branches are always resolved in the C stage.

Distancing the SETcc from Bicc does not gain any performance. The penalty

for a mispredicted branch is always 4 cycles. SETcc, Bicc, and the delay slot

can be grouped together (Figure 16-7).

Figure 16-7 Handling of Conditional Branches

• Conditional moves: MOVcc and MOVR are dispatched as single instruction

groups. Consequently, SETcc and MOVcc (or MOVR) cannot be grouped

together (vs. SETcc and Bicc). Also, a use of the destination register for the

MOVcc follows the same rule as a load-use (breaks group plus a bubble).

Figure 16-8 shows a typical example.

Figure 16-8 Handling of MOVCC

The use of FMOVR is more constrained than MOVcc. Besides having to wait for

the load buffer to be empty, FMOVR and any younger IEU instructions must be

separated by one group, even if there is no dependency between the IEU instruc-

tion and FMOVR.

setcc G E C N1 N2 N3 W
bicc G E C N1 N2 N3 W
delay G E C N1 N2 N3 W

setcc G E C N1 N2 N3 W
movcc G E C N1 N2 N3 W
use G E C N1 N2 N3 W
Sun Microelectronics
269

UltraSPARC User’s Manual
Assuming that a specific branch can only be predicted with 50% accuracy (basi-

cally, it is not predicted), the compiler must balance the two cycle penalty on av-

erage for the mispredicted branch case vs. the ability to schedule other

instructions around MOVcc (the SETcc cycle and the two groups after MOVcc,

since MOVcc is a single instruction group). The need for multiple MOVcc instruc-

tions to guard multiple operations also must be taken into account.

16.2.7 I-Cache Utilization

Grouping blocks that are executed frequently can effectively increase the appar-

ent size of the I-Cache. Cache studies have shown that it is not uncommon to

have half of the entries in the I-Cache that are never executed. By placing rarely

executed code out of a line containing a block identified as frequently executed

by profiling, better I-Cache utilization can be achieved.

16.2.8 Handling of CTI couples

UltraSPARC handles CTI couples by taking a “false” trap on the second CTI. It

processes the first CTI, executes instructions until the second CTI reaches the N3

stage, squashes all instructions executed after the first CTI, and executes instruc-

tions starting with the second CTI. Nine cycles are lost when CTI couples are en-

countered, which should discourage their use.

16.2.9 Mispredicted Branches

The dynamic branch prediction mechanism used for UltraSPARC can generally

achieve a success rate of 87% for integer programs and around 93% for floating-

point programs (SPEC92). Correctly predicted conditional branches allow the

processor to group instructions from adjacent basic blocks and continue progress

speculatively until the branch is resolved. The capability to execute instructions

speculatively is a significant performance boost for UltraSPARC. On the other

hand, when a branch is mispredicted, up to 18 instructions can be cancelled; This

is the case when two instructions from the current group are cancelled along with

4 groups of 4 instructions, as shown in Figure 16-9 (costly, but fortunately this

one case is very rare).
Sun Microelectronics
270

16. Code Generation Guidelines
Figure 16-9 Cost of a Mispredicted Branch (Shaded Area)

It should be obvious from Figure 16-9 how expensive badly behaved branches are

for UltraSPARC. Special consideration should be given to moving hard to predict

branches after highly predictable branches based on profiling, and to combining

conditions to make branches more predictable. Finally, if it is determined that

two or more branches are correlated, it may be desirable to duplicate common

blocks and thus have separate branch predictions for hard to predict branches.

For example in Figure 16-10, if the outcome of branch A, which is executed before

branch B, has an impact on the direction on branch B, then it is desirable to split

the code and duplicate the branch.

Figure 16-10 Branch Transformation to Reduce Mispredicted Branches

bicc F D G E C N1 N2 N3 W
delay F D G E C N1 N2 N3 W
instr1F D G E C N1 N2 N3 W
instr2F D G E C N1 N2 N3 W
grp1 F D G E C N1 N2 N3 W
grp2 F D G E C N1 N2 N3 W
grp3 F D G E C N1 N2 N3 W
grp4 F D G E C N1 N2 N3 W
instr1 (correct) F D G E C N1 N2 N3 W
... ...

branch A

block 1 block 2

block 3

branch B

Hard to Predict

branch A

block 1 block 2

block 3 block 3

branch B branch C

Predictable Predictable
Sun Microelectronics
271

UltraSPARC User’s Manual
The technique shown in Figure 16-10 can be generalized to N levels, where N
branches are correlated and become more predictable. The above technique may

lead to unrolling of loops that were previously identified as bad candidates, be-

cause of the unpredictable behavior of their conditional branches.

16.2.10 Return Address Stack (RAS)

In order to speed up returns from subroutines invoked through CALL instruc-

tions, UltraSPARC dedicates a 4-deep stack to store the return address. Each time

a CALL is detected, the return address is pushed onto this RAS (Return Address

Stack). Each time a return is encountered, the address is obtained from the top of

the stack and the stack is popped. UltraSPARC considers a return to be a JMPL or

RETURN with rs1 equal to %o7 (normal subroutine) or %i7 (leaf subroutine). The

RAS provides a guess for the target address, so that prefetching can continue

even though the address calculation has not yet been performed. JMPL or RE-

TURN instructions using rs1 values other than %o7 or %i7 , and DONE or RETRY

instructions also use the value on the top of the RAS for continuing prefetching,

but they do not pop the stack. See Section 10.1, “Overview,” on page 169 for in-

formation about the contents of the RAS during RED_state processing.

16.3 Data Stream Issues

16.3.1 D-Cache Organization

The D-Cache is a 16K byte, direct mapped, virtually indexed, physically tagged

(VIPT), write-through, non-allocating cache. It is logically organized as 512 lines

of 32 bytes. Each line contains two 16-byte sub-blocks (Figure 16-11).

Figure 16-11 Logical Organization of D-Cache

16 bytes 16 bytes

sub-block 0 sub-block 1

512 lines
Sun Microelectronics
272

16. Code Generation Guidelines
16.3.2 D-Cache Timing

The latency of a load to the D-Cache depends on the opcode. For unsigned loads,

data can be used two cycles after the load. For instance, if the first two instruc-

tions in the instruction buffer are a load and an instruction dependent on that

load, the grouping logic will break the group after the load and a bubble will be

inserted in the pipeline the following cycle. Code compiled for an earlier SPARC

processor with a load use penalty of one cycle will show a penalty of about.1 CPI

just for this rule; thus, it is very important to separate loads from their use.

16.3.2.1 Signed Loads

All signed loads smaller than 64 bits must be separated from their use by three

cycles; otherwise, an extra bubble is inserted in the pipeline to force the separa-

tion between the load and its use. Floating-point loads are not sign extended, so

they have a latency of two cycles.

Once a signed load (smaller than 64 bits) is encountered in the instruction stream,

all subsequent consecutive loads (signed or unsigned) also return data in three

cycles; otherwise, there would be a collision between two loads returning data.

As soon as a cycle without a load appears in the pipeline, the latency of loads is

brought back to two cycles.

Note: The SPARC-V8 LD instruction is replaced with LDUW in SPARC-V9; the

new instruction does not require sign extension.

16.3.3 Data Alignment

SPARC-V9 requires that all accesses be aligned on an address equal to the size of

the access. Otherwise a mem_address_not_aligned trap is generated. This is espe-

cially important for double precision floating-point loads, which should be

aligned on an 8-byte boundary. If misalignment is determined to be possible at

compile time, it is better to use two LDF (load floating-point, single precision) in-

structions and avoid the trap. UltraSPARC supports single-precision loads mixed

with double-precision operations, so that the case above can execute without pen-

alty (except for the additional load). If a trap does occur, UltraSPARC dedicates a

trap vector for this specific misalignment, which reduces the overall penalty of

the trap.

Grouping load data is desirable, since a D-Cache sub-block can contain either

four properly aligned single-precision operands or two properly aligned double-

precision operands (eight and four respectively for a D-Cache line). As we shall
Sun Microelectronics
273

UltraSPARC User’s Manual
see later, this is desirable not only for improving the D-Cache hit rate (by increas-

ing its utilization density), but also for D-Cache misses where, for sequential ac-

cesses, one out of two requests to the E-Cache can be eliminated. Grouping load

data beyond a D-Cache sub-block is also desirable, since an E-Cache line contains

four D-Cache sub-blocks (for a total of 64 bytes). Thus, sequential accesses can

guarantee that only one E-Cache miss will occur for loads that access up to four

consecutive D-Cache sub-blocks (two D-Cache lines). Section 16.3.6 discuss how

code scheduled for accessing data directly out of the E-Cache can hide the extra

latency introduced by D-Cache misses.

Data alignment (right justification) for byte, halfword, and word accesses does

not add latency to the loads (unless superseded by the sign rule described in Sec-

tion 16.3.2.1, “Signed Loads”). This is true whether the load goes to the register

file or to internal pipeline bypasses.

16.3.4 Direct-Mapped Cache Considerations

A direct-mapped cache is more susceptible to collisions than a set-associative

cache. It is possible to organize data at compile time so that collisions are mini-

mized, however. For frequently executed loops, the compiler should organize the

data so that all accesses within the loop are mapped to different cache lines, un-

less the access is to a line that is already mapped and the access is to the same

physical line. For UltraSPARC, this means that accesses should differ in the virtual

address bits VA<13:5>. Hot spots can be detected by configuring the on-chip

counters to accumulate D-Cache accesses and D-Cache misses. The counters can

be turned on/off before/after the load of interest, or around a series of loads

where hot spots are suspected to occur.

16.3.5 D-Cache Miss, E-Cache Hit Timing

Under normal circumstances (for example, no snoops, no arbitration conflict for

the E-Cache bus, etc.), loads that hit the E-Cache are returned N cycles later than

loads that hit the D-Cache, where N is determined by the E-Cache SRAM mode.

Table 16-1 shows the latency for all supported SRAM Modes. (See Section 1.3.9.1,

“E-Cache SRAM Modes,” on page 9 for more information, including which

modes are supported by each UltraSPARC model.)

Table 16-1 D-Cache Miss, E-Cache Hit Latency Depends on SRAM Mode

SRAM Modes

1–1–1 2–2

of Cycles 6 7
Sun Microelectronics
274

16. Code Generation Guidelines
If such a load (D-Cache miss, E-Cache hit) is immediately followed by a use, the

group is broken and an (N+1)-cycle stall occurs; Figure 16-12 illustrates this situ-

ation. (The figure shows a 7-cycle stall, which is consistent with 1–1–1 mode;

2–2 mode incurs an 8-cycle stall.)

Figure 16-12 D-Cache Miss, E-Cache Hit (1–1–1 mode shown)

Because of the high penalty associated with a load miss for code scheduled based

on loads hitting the D-Cache, UltraSPARC provides hardware support for non-

blocking loads through a load buffer that allows code scheduling based on Exter-
nal Cache (E-Cache) hits.

16.3.6 Scheduling for the E-Cache

Some applications have a working set that is too large to fit within the D-Cache

(they cause many capacity misses); others use data in patterns that generate

many conflict-misses. Compilers c an schedule these applications to “bypass” the

D-Cache and access the data out of the E-Cache.

Loads that miss the D-Cache do not necessarily stall the pipeline (non-blocking

loads). Instead, they are sent to the load buffer, where they wait for the data to be

returned from the E-Cache. The pipeline stalls only when an instruction that is

dependent on the non-blocking load enters the pipeline before the load data is re-

turned.

16.3.6.1 Load Buffer Timing

The load buffer’s depth and its interaction with the rest of the pipeline are de-

signed to support full throughput (one load per cycle) for a D-Cache with a three-

cycle pin-to-pin latency and one cycle throughput, which is consistent with 1–1–1

mode.) As shown in Figure 16-13, if a use is separated from a load by 8 cycles, no

stall occurs and full throughput is achieved. In comparison, if code is scheduled

for the D-Cache only, N extra cycles are required between the load and the use,

where N is determined by the SRAM mode, as shown in Table 16-1 on page 274.

The shaded rows in Figure 16-13 represent these N extra cycles.

load r 1 F D G E C N1 Q Q Q Q Q
use r 1 F D G G E E E E E E E E C N1 N2 N3 W

Group Break (N+1)-Cycle Stall Execution Resumes
Sun Microelectronics
275

UltraSPARC User’s Manual
Figure 16-13 Pipelined Loads to the E-Cache (1–1–1 mode shown)

Thus, the load buffer must be at least seven entries deep to accommodate all

pipelined loads in the steady state. Two additional entries are needed so that,

with seven loads in the buffer, two more loads can be issued without blocking.

One of additional these entries is in the W Stage, the other is in the C Stage (loads

enter the load buffer in N1). Thus, the load buffer must be (and is) nine entries

deep.

16.3.6.2 Mixing D-Cache Misses and D-Cache Hits

UltraSPARC “golden rule” is that all load data are returned in order. For instance

if a load misses the D-Cache, enters the load buffer, and is followed by a load that

hits the D-Cache, the data for the second (younger) load is not accessible. In this

case, the younger load also must enter the load buffer; it will access the D-Cache

array only after the older load (D-Cache miss) does so. If the load buffer is not

empty, the D-Cache array access is decoupled from the D-Cache tag access; that

is, it is performed some cycles after the tag access.

Note: Accessing blocked data in the D-Cache while there is a load in the load

buffer and scheduling the code so that operations can be performed on the

blocked load data is not supported on UltraSPARC. Data is always returned and

operated upon in order.

Code Example 16-1 on page 277 clarifies what is not supported without stalls on

UltraSPARC.

load r 1 G E C N1 Q Q Q Q Q

load r 2 G E C N1 Q Q Q Q Q

load r 3 G E C N1 Q Q Q Q Q

load r 4 G E C N1 Q Q Q Q Q

load r 5 G E C N1 Q Q Q Q Q

load r 6 G E C N1 Q Q Q Q Q

load r 7 G E C N1 Q Q Q Q Q

load r 8 G E C N1 Q Q Q Q Q

use r 1 G E C N1 N2 N3 W
Sun Microelectronics
276

16. Code Generation Guidelines
Code Example 16-1 Load Hit Bypassing Load Miss (Not Supported on UltraSPARC)

In Code Example 16-1, the first ADD will stall the pipeline until both the load

miss and the load hit are handled. If the ADDs are interchanged, the first ADD

can proceed as soon as the load miss is handled.

As a rule, if load latencies are expected to be a problem, the compiler should al-

ways schedule the use of loads in the same order that the loads appear in the pro-

gram. While blocking part of an array in the D-Cache and operating on the data

during a previous D-Cache miss may help reduce register pressure (three extra

registers could be made available for an inner loop), the added complexity need-

ed to handle conflicts in accessing the D-Cache array offsets the potential benefits

(for example, adding a port to the D-Cache vs. adding a bubble on collisions).

16.3.6.3 Loads to the Same D-Cache Sub-block

When a load enters the load buffer, the memory location loaded is compared to

all other (older) loads in the buffer. If the other loads are to the same 16-byte sub-

block, the entering load is marked as a hit, since by the time it accesses the

D-Cache array, the sub-block will be present (Code Example 16-2). The detection

of a hit eliminates a transaction to the E-Cache, which results in making more

slots available for other clients of the E-Cache bus (I-Cache, store buffer, snoops).

Thus, it helps to organize the code so that data is accessed sequentially. This may

involve interchanging loops so that array subscripts are incremented by one be-

tween each load access.

Code Example 16-2 Interleaved D-Cache Hits and Misses to Same Sub-block

In 2–2 mode, UltraSPARC can access the E-Cache only every other cycle. This still

provides an average of 8 bytes per cycle, but only in 16-byte chunks. Thus, it is

important to try to schedule sequential loads to the same 16-byte D-Cache line,

since this allows systems running in 2–2 mode to achieve the same steady-state

load/issue rate as in 1–1–1 mode.

ld [%l1+%g0],%l6 (D-Cache miss)
ld [%l2+%g0],%l7 (D-Cache hit)
add %l7,%g1,%g2 (use of D-Cache hit)
add %l6,%g1,%g3 (use of D-Cache miss)

.align start 16 bytes
ld [start],%f0 (D-Cache miss)
ld [start + 8],%f2 (D-Cache hit)
ld [start + 16],%f4 (D-Cache miss)
ld [start + 24],%f6 (D-Cache hit)
Sun Microelectronics
277

UltraSPARC User’s Manual
16.3.6.4 Mixing Independent Loads and Stores

Note: The bus turnaround penalty is two cycles for systems running in 1–1–1

mode only; systems running in 2–2 mode incur no turnaround penalty.

Mixing reads and writes from and to the E-Cache results in a penalty, caused by

the difference in timing between reads and writes and also the bus turnaround

time. UltraSPARC automatically tends to separate loads and stores through the

use of the load buffer and store buffer. The loads are given access to the E-Cache,

even if older stores have been waiting to access it. Only when the number of

stores passes the “high-water mark” (5 stores) does the store buffer have priority.

The code can be organized to further minimize the number of bus turnaround cy-

cles. Code Example 16-3 shows how loads and stores can be grouped so that only

one turn-around penalty occurs (for a given state of the load buffer and store

buffer). This can be accomplished with the help of a memory reference analyzer

(Section 16.3.9, “Non-Faulting Loads,” covers this in more detail).

Code Example 16-3 Avoiding Bus Turnaround Penalties (1–1–1 mode only)

16.3.6.5 Using LDDF to Load Two Single-Precision Operands/Cycle

UltraSPARC supports single cycle 8-byte data transfers into the floating-point

register file for LDDF. Wherever possible, applications that use single-precision

floating-point arithmetic heavily should organize their code and data to replace

two LDFs with one LDDF. This reduces the load frequency by approximately one

half, and cuts execution time considerably.

16.3.7 Store Buffer Considerations

The store buffer on UltraSPARC is designed so that stores can be issued even

when the data is not ready. More specifically, a store can be issued in the same

group as the instruction producing the result. The address of a store is buffered

until the data is eventually available. Once in the store buffer, the store data is

buffered until it can be sent “quietly” (that is, without interfering with other in-

structions) to the D-Cache, the E-Cache, I/0 devices, or the frame buffer (for non-

cacheable stores).

ld [addr1],%l1 ld[addr1],%l1
st [addr2],%l2 ld[addr3],%l3
ld [addr3],%l3 st[addr2],%l2
st [addr4],%l4 st[addr4],%l4

2 Penalties 1 Penalty
Sun Microelectronics
278

16. Code Generation Guidelines
In order to increase the throughput to the E-Cache, which results in decreasing

the frequency of the store buffer full condition, UltraSPARC collapses two stores to

the same 16 bytes of memory into one store. Since compression only occurs

among two adjacent entries in the store buffer, the code should be organized so

that multiple stores to the same “region” in memory are issued sequentially (in-

creasing or decreasing order).

16.3.8 Read-After-Write and Write-After-Read Hazards

A Read-After-Write (RAW) hazard occurs when a load to the same address as an

older outstanding store is issued. UltraSPARC does not provide direct by-passing

from intermediate stages of the store buffer to the various pipes that may result

in pipeline stalls.

Most RAW hazards can be eliminated by proper register allocation and by elimi-

nating spurious loads. Disassembled traces of various programs showed that

most RAWs were “false” RAWs, and can be eliminated. However, some RAWs

were “true” RAWs; they occur because two data structures point to the same

memory location (through array indexes or pointers) without having knowledge

that there could be a match between them. In order to simplify the hardware, the

full 40 physical address bits are not used when comparing the address of the

memory location requested by the load with the addresses associated with the

stores in the store buffer. The rules are:

• The physical tag of the address is ignored

• If the load hits the D-Cache, bits <13:0> of the address are used for

comparison (byte granularity)

• If the load misses the D-Cache, bits <13:4> of the address are used for

comparison (sub-block granularity)

In order to cover both cache hits and cache misses, one should try to avoid RAWs

based on a 16-byte boundary (using bits <13:4>). Even if a RAW occurs, the pipe-

line is not stalled until a use of the load data enters the pipeline (similar to the

way loads are handled during D-Cache misses). Code Example 16-4 shows an ex-

ample of back-to-back instructions causing a RAW hazard and a load-use. In the

best scenario (that is, when the store buffer and load buffer are empty) the RAW

hazard stalls the pipe for 8 cycles (versus one cycle for the normal load-use stall).

This is mainly due to the fact that the store data enters the store buffer late in the

pipe and that the load buffer must wait until the data is in the D-Cache before it

can access it.
Sun Microelectronics
279

UltraSPARC User’s Manual
Code Example 16-4 RAW Hazard Penalty

Under the Relaxed Memory Order (RMO) mode, stores can pass younger loads if

a MEMBAR instruction has not been issued to prevent it. UltraSPARC provides

hardware detection of Write-After-Read (WAR) hazards so that a store to the

same memory address as an older outstanding load does not pass that load. If a

WAR hazard is detected, the store waits in the store buffer until the older load

completes. The CPI penalties resulting from this only have a second-order effect

on performance. The store buffer may fill up (rare), or an extra RAW hazard

could be generated because stores stay in the store buffer longer.

16.3.9 Non-Faulting Loads

The ability to move instructions “up” in the instruction stream beyond condition-

al branches can effectively hide the latencies of long operations. This also increas-

es the number of candidate instructions that the compiler can schedule without

conflicts. SPARC-V9 provides non-faulting loads (equivalent to silent loads used for

Multiflow TRACE and Cydrome Cydra-5), so that loads can be moved ahead of

conditional control structures that guard their use. Non-faulting loads execute as

any other loads, except that catastrophic errors, such as segmentation fault condi-

tions, do not cause the program to terminate. The hardware and software (trap

handler) cooperate so that the load appears to complete normally with a zero re-

sult. In order to minimize page faults when a speculative load references a NULL

pointer (address zero), system software should map low addresses (especially ad-

dress zero) to a page of all zeros and use the Non-Faulting Only (NFO) page at-

tribute bit.

Simulations of general code percolation for UltraSPARC have shown that there is

much to be gained by using non-faulting loads. For integer programs the average

group size (AGS) sent down the pipeline is 33% larger when code motion is al-

lowed across one branch (using speculative loads) and 50% larger when instruc-

tions can be moved ahead of two branches.

st %l1,[addr1]
ld [addr1],%l2
add %l2,%l3,%l4

RAW Hazard
Sun Microelectronics
280

Grouping Rules and Stalls 17
17.1 Introduction

The chapter explains in detail how to group instructions to obtain maximum

throughput in UltraSPARC. The following subsections explain the formatting

conventions that make it easier to understand this information.

17.1.1 Textual Conventions

Rules are presented that consider instructions in three different ways:

Instructions:

Actual SPARC-V9 and UltraSPARC machine instructions. Instructions are

always written in Mixed Case BODY FONT. Examples are:

• FdMULq (Floating-point multiply double to quad — SPARC-V9)

• LDDF (Load Double Floating-Point Register — SPARC-V9)

• SHUTDOWN (Power Down Support — UltraSPARC)

Instruction Families:

Groups of related SPARC-V9 instructions, introduced (but not described) in The
SPARC Architecture Manual, Version 9. Instruction families are always written in

Mixed Case Bold Face Body Font. Examples are:

• BPcc (Branch on Integer Condition Codes with Prediction)

— Consists of the following instructions: BPA, BPCC, BPCS, BPE, BPG,

BPGE, BPGU, BPL, BPLE, BPLEU, BPN, BPNE, BPNEG, BPPOS, BPVC, and

BPVS.
Sun Microelectronics
281

UltraSPARC User’s Manual
• FMOVcc (Move Floating-Point Register on Condition)

— Consists of the following instructions: FMOV{s,d,q}A, FMOV{s,d,q}CC,

FMOV{s,d,q}CS, FMOV{s,d,q}E, FMOV{s,d,q}G, FMOV{s,d,q}GE,

FMOV{s,d,q}GU, FMOV{s,d,q}L, FMOV{s,d,q}LE, FMOV{s,d,q}LEU,

FMOV{s,d,q}N, FMOV{s,d,q}NE, FMOV{s,d,q}NEG, FMOV{s,d,q}POS,

FMOV{s,d,q}VC, and FMOV{s,d,q}VS.

Instruction Classes:

Groups of SPARC-V9 and UltraSPARC instructions that have similar effects.

Instruction classes are always written in lower case italic body font. Examples are:

• setcc (any instruction that sets the condition codes)

• alu (any instruction processed in the Arithmetic and Logic Unit)

17.1.2 Example Conventions

Instructions are shown with offsets between their stages, to indicate the amount

of latency that (normally) occurs between the instructions. The following instruc-

tion pair has one cycle of latency:

This instruction pair has no latency:

17.2 General Grouping Rules
Up to four instructions can be dispatched in one cycle, subject to availability from

the instruction buffer, execution resources, and instruction dependencies.

UltraSPARC has input (read-after-write) and output (write- after-write) depen-

dency constraints, but no anti-dependency (write-after-read) constraints on in-

struction grouping.

Instructions belong to one or more of the following categories:

• Single group

• IEU

• Control transfer

• Load/store

ADD i1, i2, i6 G E C N1 N2 N3 W

SLL i6, 2, i8 G E C N1 N2 N3 W

alu → r6 G E C N1 N2 N3 W

store → r6 G E C N1 N2 N3 W
Sun Microelectronics
282

17. Grouping Rules and Stalls
• Floating-point/graphics

Note: CALL, RETURN, JMPL, BPr, PST and FCMP{LE,NE,GT,EQ}{16,32} belong to

multiple categories.

17.3 Instruction Availability

Instruction dispatch is limited to the number of instructions available in the in-

struction buffer. Several factors limit instruction availability. UltraSPARC fetches

up to four instructions per clock from an aligned group of eight instructions.

When the fetch address mod 32 is equal to 20, 24, or 28, then three, two, or one

instruction(s) respectively will be added to the instruction buffer. The next cache

line and set are predicted using a next field and set predictor for each aligned

four instructions in the instruction cache. When a set or next field mispredict oc-

curs, instructions are not added to the instruction buffer for two clocks.

When an I-Cache miss occurs, instructions are added to the instruction buffer as

data is returned from the E-Cache. For an E-Cache hit, this results in a five to six

clock delay in adding instructions to the buffer. Up to eight sequential instruc-

tions are added for each I-Cache miss. The next fetch from the I-Cache will not

add instructions to the instruction buffer for one to two clocks after the E-Cache

instructions are added. Back-to-back I-Cache misses will occur at a maximum rate

of eight clocks each for E-Cache hits.

E-Cache misses and arbitration for E-Cache cause additional delay in adding in-

structions to the buffer. An E-Cache miss has a delay of at least eleven clocks,

plus the System Interconnect latency for the first word of the block. An I-Cache

miss and E-Cache hit following an E-Cache miss returns instructions eight clocks

after the last word of data from the E-Cache miss is delivered on the system inter-

connect.

17.4 Single Group Instructions

Certain instructions are always dispatched by themselves to simplify the hard-

ware. These instructions are: LDD(A), STD(A), block load instructions (LDDF{A}

with an ASI of 7016, 7116, 78,16 7916, F016, F116, F816, F916), ADDC{cc}, SUBC{cc},
{F}MOVcc, {F}MOVr, SAVE, RESTORE, {U,S}MUL{cc), MULX, MULScc, {U,S}DIV{X},

{U,S}DIVcc, LDSTUB{A}, SWAP{A}, CAS{X}A, LD{X}FSR, ST{X}FSR, SAVED, RESTORED,

FLUSH{W}, ALIGNADDR, RETURN, DONE, RETRY, WR{PR}, RD{PR}, Tcc, SHUT-

DOWN, and the second control transfer instruction of a DCTI couple.
Sun Microelectronics
283

UltraSPARC User’s Manual
17.5 Integer Execution Unit (IEU) Instructions

IEU instructions can be dispatched only if they are in the first three instruction

slots. A maximum of two IEU instructions can be executed in one cycle. There are

two IEU pipelines: IEU0 and IEU1. The two data paths are slightly different, and

some IEU instructions can be dispatched only to a particular pipeline. The fol-

lowing instructions can dispatched to either IEU pipeline: ADD, AND, ANDN, OR,

ORN, SUB, XOR, XNOR and SETHI. These instructions can be grouped together or

with older IEU0 or IEU1 specific instructions.

The IEU0 data path has dedicated hardware for shift instructions: SLL{X}, SRL{X}.

SRA{X}. Two shift instructions cannot be grouped together. Shift instructions can

be grouped with older IEU1 specific instructions, but they cannot be grouped

with older non-specific IEU instructions. For example:

The IEU1 datapath has dedicated hardware for the condition-code-setting instruc-

tions: (TADDcc{TV}, TSUBcc{TV}, ADDcc, ANDcc, ANDNcc, ORcc, ORNcc, SUBcc,

XORcc, XNORcc), EDGE and ARRAY. CALL, JMPL, BPr, PST and FC-

MP{LE,NE,GT,EQ}{16,32} also require the IEU1 data path (besides counting as CTI,

store, or floating-point instructions respectively), since they must access the inte-

ger register file. Two instructions requiring the use of IEU1 cannot be grouped to-

gether; for example, only one instruction that sets the condition codes can be

dispatched per cycle. An IEU1 instruction can be grouped with older shift in-

structions and non-specific IEU instructions.

Note: For UltraSPARC-II, a valid control transfer instruction (CTI) that was

fetched from the end of a cache line is not dispatched until its delay slot also has

been fetched.

17.5.1 Multi-Cycle IEU Instructions

Some integer instructions execute for several cycles and sometimes prevent the

dispatch of subsequent instructions until they complete.

MULScc inserts one bubble after it is dispatched.

SDIV{cc} inserts 36 bubbles, UDIV{cc} inserts 37 bubbles, and {U,S}DIVX inserts 68

bubbles after they are dispatched.

ADD i1, i2, i6 G E C N1 N2 N3 W

SLL i6, 2, i8 G E C N1 N2 N3 W
Sun Microelectronics
284

17. Grouping Rules and Stalls
MULX, and {U,S}MUL{cc} delay dispatching subsequent instructions for a variable

number of clocks, depending on the value of the rs1 operand. Four bubbles are

inserted when the upper 60 bits of rs1 are zero, or for signed multiplies when the

upper 60 bits of rs1 are one. Otherwise, an additional bubble is inserted each time

the upper 60 bits of rs1 are not zero (or one for signed multiplies) after arithmetic

right shifting rs1 by two bits. This implies a maximum of 18 bubbles for SMUL{cc},

19 bubbles for UMUL{cc}, and 34 bubbles for MULX.

WR{PR} inserts four bubbles after it is dispatched. RDPR from the CANSAVE,

CANRESTORE, CLEANWIN, OTHERWIN, FPRS, and WSTATE registers, and RD

from any register are not dispatchable until four clocks after the instruction reach-

es the first slot of the instruction buffer.

Writes to the TICK, PSTATE, and TL registers and FLUSH{W} instructions cause a

pipeline flush when they reach the W Stage, effectively inserting nine bubbles.

17.5.2 IEU Dependencies

Instructions that have the same destination register (in the same register file) can-

not be grouped together, unless the destination register is %g0. For example:

Instructions that reference the result of an IEU instruction cannot be grouped

with that IEU instruction, unless the result is being stored in %g0. For example:

There are two exceptions to this rule: Integer stores can store the result of an IEU

instruction other than FCMP{LE,NE,GT,EQ}{16,32} and be in the same group. For ex-

ample:

Also, BPicc or Bicc can be grouped with an older instruction that sets the condi-

tion codes. For example:

alu → i6 G E C N1 N2 N3 W

load → i6 G E C N1 N2 N3 W

alu → i6 G E C N1 N2 N3 W

LDX [i6+i1], i8 G E C N1 N2 N3 W

alu → r6 G E C N1 N2 N3 W

store → r6 G E C N1 N2 N3 W

seticc G E C N1 N2 N3 W

BPicc G E C N1 N2 N3 W
Sun Microelectronics
285

UltraSPARC User’s Manual
Instructions that read the result of a MOVcc or MOVr cannot be in the same group

or the following group. For example:

Instructions that read the result of an FCMP{LE,NE,GT,EQ}{16,32} (including stores)

cannot be in the same group or in the two following groups. STD is treated as de-

pendent on earlier FCMP instructions, regardless of the actual registers refer-

enced. For example:

In some cases, UltraSPARC prematurely dispatches an instruction that uses the

result of an FCMP{LE,NE,GT,EQ}{16,32}; it then cancels the instruction in the W

Stage and refetches it. This effectively inserts nine bubbles into the pipe. To avoid

this, software should explicitly force the use instruction to be in the third group or

later after the FCMP{LE,NE,GT,EQ}{16,32}.

MULX, {U,S}MUL{cc}, MULScc, {U,S}DIV{X}, {U,S}DIVcc, and STD cannot be in the

two groups following an FCMP{LE,NE,GT,EQ}{16,32}. For example:

FMOVr cannot be in the same group or in the group following an IEU instruction,

even if it does not reference the result of the IEU instruction. It cannot be in the

same group or the next two groups following an FCMP{LE,NE,GT,EQ}{16,32}. For

example:

MOVcc %xcc, 0, i6 G E C N1 N2 N3 W

LDX [i6+i1], i8 G E C N1 N2 N3 W

FCMPLE32 f2, f4, i6 G E C N1 N2 N3 W

LDX [i6+i1], i8 G E C N1 N2 N3 W

FCMPLE32 f2, f4, i6 G E C N1 N2 N3 W

MUL i8,i7,i9 G E C N1 N2 N3 W

ADD i1, i2, i6 G E C N1 N2 N3 W

FMOVr i5,i7 G E C N1 N2 N3 W
Sun Microelectronics
286

17. Grouping Rules and Stalls
17.6 Control Transfer Instructions
One Control Transfer Instruction (CTI) can be dispatched per group. The follow-

ing control transfer instructions are not single group instructions: CALL, BPcc,

Bicc, FB(P)fcc, BPr, and JMPL. CALL and JMPL are always dispatched as the oldest

instruction in the group; that is, a group break is forced before dispatching these

instructions.

DONE, RETRY, and the second instruction of a delayed control transfer instruction

(DCTI) couple flush the pipe when they reach the W Stage, effectively inserting

nine bubbles into the pipe. The pipeline is flushed even if the second DCTI is an-

nulled.

17.6.1 Control Transfer Dependencies

UltraSPARC can group instructions following a control transfer with the control

transfer instruction. Instructions following the delay slot come from the predicted

instruction stream. For example, if a branch is predicted taken:

If the branch is predicted not taken:

FCMPLE16 → i6 G E C N1 N2 N3 W

FMOVr i5 G E C N1 N2 N3 W

setcc G E C N1 N2 N3 W

BPcc G E C N1 N2 N3 W

FADD (delay slot) G E C N1 N2 N3 W

FMUL (branch target) G E C N1 N2 N3 W

setcc G E C N1 N2 N3 W

BPcc G E C N1 N2 N3 W

FADD (delay slot) G E C N1 N2 N3 W

FDIV (sequential) G E C N1 N2 N3 W
Sun Microelectronics
287

UltraSPARC User’s Manual
If the delay slot of a DCTI is aligned on a 32-byte address boundary (that is, the

DCTI is the last instruction in a cache line and the delay slot contains the first in-

struction in the next cache line), then the DCTI cannot be grouped with instruc-

tions from the predicted stream. For example:

If the second instruction of the predicted stream is aligned on a 32-byte address

boundary, then the DCTI cannot be grouped with that instruction. For example:

The delay slot of a DCTI cannot be grouped with instructions from the predicted

stream of another DCTI following the delay slot. For example:

When a control transfer is mispredicted, the instruction buffer and instructions

younger than the delay slot in the pipe are flushed, effectively inserting four bub-

bles in the pipe. An FDIV or FSQRT in the mispredicted stream cause dependent

instructions in the correct branch stream to stall until the FDIV or FSQRT reaches

setcc G E C N1 N2 N3 W

BPcc G E C N1 N2 N3 W

FADD (32-byte aligned) G E C N1 N2 N3 W

FMUL (branch target) G E C N1 N2 N3 W

BPcc G E C N1 N2 N3 W

ADD (delay slot) G E C N1 N2 N3 W

FADD G E C N1 N2 N3 W

FMUL (32-byte aligned) G E C N1 N2 N3 W

FADD (delay slot 1) G E C N1 N2 N3 W

BPcc G E C N1 N2 N3 W

ADD (delay slot 2) G E C N1 N2 N3 W

FMUL (branch target) G E C N1 N2 N3 W
Sun Microelectronics
288

17. Grouping Rules and Stalls
the W1 Stage1. If the branch in the previous example was predicted not taken but

actually was taken:

If an annulling branch is predicted not taken, the delay slot is still dispatched.

Multicycle instructions (except load instructions) run to completion, even if the

delay slot instruction is annulled. For example:

The imul unit is busy for the duration of the multiply.

An annulled delay slot other than a load affects subsequent dependency checking

until the delay slot reaches the W1 Stage. For example:

In the example above, the FADD instruction is stalled in issue until the FDIV in-

struction completes.

A predicted annulled load does not affect dependency checking after it is dis-

patched. For example:

1. The W1 Stage is a virtual stage that is normally not visible to the programmer.

setcc G E C N1 N2 N3 W

BPcc (mispredicted) G E C N1 N2 N3 W

FADD (delay slot) G E C N1 N2 N3 W

FMUL → f0 (sequential) G E C N1 N2 N3 W W1

FMUL f0,f0,f0 (branch target) G E

BPcc, a (not taken) G E C N1 N2 N3 W

imul (delay slot) G E E E E E E . . .

BPcc, a (not taken) G E C N1 N2 N3 W

FDIV → f0 (delay slot) G E C N1 N2 N3 W W1

FADD f0,f0,f1 (sequential) G

BPcc, a (predicted not taken) G E C N1 N2 N3 W

fld → f0 (delay slot) G E C N1 N2 N3 W

FADD f0,f0,f1 (sequential) G E C N1 N2 N3 W
Sun Microelectronics
289

UltraSPARC User’s Manual
An annulled load use or floating-point use will be treated as a dependent instruc-

tion until the N2 Stage of the branch. For example:

If the annulling branch is grouped with a delay slot containing a load use, the

group will pay the full load use penalty even if the load use is annulled. This is

because the branch is not resolved until the use stall is released.

WR{PR}, SAVE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE are

stalled in the G Stage until earlier annulling branches are resolved, even if they

are not in the delay slot. This means that they cannot be dispatched in the same

group or the first three groups following an annulling branch instruction. For ex-

ample:

LDD{A}, LDSTUB{A}, SWAP{A} and CAS{X}A are stalled in the G Stage if there is a

delayed control transfer instruction in the E Stage or C Stage. For example:

17.7 Load / Store Instructions

Load / store instructions can be dispatched only if they are in the first three in-

struction slots. One load/store instruction can be dispatched per group. Load /

store instructions other than single group are: LD{SB,SH,SW,UB,UH,UW,X}{A},

LD{D}F{A}, ST{B,H,W,X}{A}, STF{A}, STDF{A}, JMPL, MEMBAR, STBAR, PREFETCH{A}.

LDD{A}, STD{A}, LDSTUB{A}, SWAP{A} will not dispatch younger instructions for

one clock after they are dispatched. CAS{X}A will not dispatch younger instruc-

tions for two clocks after they are dispatched.

Loads are not stalled on a cache miss, instead they are enqueued in the load buff-

er until data can be returned. Load data is returned in the order that loads are is-

sued, so a cache miss forces subsequent load hits to be enqueued until the older

load miss data is available.

FADD f7,f7,f6 G E C N1 N2 N3 W

Bcc, a (not taken) G E C N1 N2 N3 W

FADD f6,f7,f8 G flushed

FADD f6,f7,f8 G E C N1 N2

Bicc, a G E C N1 N2 N3 W

SAVE G E C N1 N2

Bicc G E C N1 N2 N3 W

LDD G E C N1 N2
Sun Microelectronics
290

17. Grouping Rules and Stalls
Stores are not stalled on a cache miss. Stores are enqueued in the store buffer un-

til data can be written to the E-Cache SRAM for cacheable accesses, the UDB for

noncacheable accesses, or the internal register for internal ASIs. Store data is

written in the order that stores are issued, so a cache miss forces subsequent store

hits to remain enqueued until the older store miss data is written out.

17.7.1 Load Dependencies and Interaction with Cache Hierarchy

Instructions that reference the result of a load instruction cannot be grouped with

the load instruction or in the following group unless the register is %g0. For ex-

ample:

Single-precision floating-point loads lock the double register containing the sin-

gle precision rd for data dependency checking. For example:

Instructions other than floating-point loads that have the same destination regis-

ter as an outstanding load are treated the same as a source register dependency.

For example:

When an instruction referencing a load result enters the E Stage and the data is

not yet returned, all instructions in the E Stage and earlier will be stalled. If there

are multiple load uses, then all E Stage and earlier instructions will be stalled un-

til loads that have dependencies return data. E Stage stalls can occur when refer-

encing the result of a signed integer load, a load that misses the D-Cache or a

D-Cache load hit whose data is delayed following one of the two previous cases.

17.7.1.1 Delayed Return Mode

Signed integer loads that hit the D-Cache cause UltraSPARC to enter delayed re-

turn mode. In delayed return mode, an extra clock of delay is added to all return-

ing load data. UltraSPARC remains in delayed return mode until some load other

than a signed integer D-Cache hit can return data in the normal time without col-

liding with a delayed return mode load.

LDDF [r1], f6 (not enqueued) G E C N1 N2 N3 W

FMULd f4, f6, f8 G E C N1 N2 N3

LDF [r1], f6 (not enqueued) G E C N1 N2 N3 W

FMULs f7, f7, f8 G E C N1 N2 N3

load i6 (not enqueued) G E C N1 N2 N3 W

ADD i2, i1, i6 G E C N1 N2 N3
Sun Microelectronics
291

UltraSPARC User’s Manual
17.7.1.2 Cache Timing

The following example illustrates D-Cache hit timing. The first load causes

UltraSPARC to enter delayed return mode, returning data in the N1 Stage. The

second load is also in delayed return mode returning data in its N1 Stage, other-

wise it would collide with the first load data. The group containing the third load

and the first ADD (which references the first load data) is stalled in the E Stage

for one clock until both load uses by the first ADD have returned data. Since the

third load is stalled in E, its normal C Stage data return will not collide with a

previous delayed return mode load. This allows the last ADD to avoid an E Stage

stall. If the third load was not grouped with the first ADD, it would not be stalled

in the E Stage, and the last ADD would be dispatched one clock earlier. The third

load causes the pipeline to exit delayed return mode.

A D-Cache load miss that hits the E-Cache will return data seven clocks after the

load reaches the C Stage for delayed return mode and six clocks after the load

reaches the C Stage otherwise. Because load data is returned in order, a D-Cache

load hit that reaches the C Stage one clock after a D-Cache miss also returns data

seven clocks after the load reaches the C Stage for signed integer loads and six

clocks after the load reaches the C Stage otherwise. The latency for subsequent

D-Cache load hits is reduced as bubbles occur between loads reaching the C

Stage and there are no D-Cache misses.

17.7.1.3 Block Memory Accesses

Unlike other loads, block loads do not lock all of their destination registers. If

there are two block loads outstanding, any instruction except a block store will be

held in the G Stage until the first block load leaves the load buffer. A block load

leaves the load buffer when its first word of data has returned. Each system clock

that Data_Stall is asserted when returning subsequent words of the block load

causes two or three bubbles to be inserted into the pipeline, depending on the

processor-to-UPA frequency ratio.

LDSB [i1], i6 (D-Cache hit) G E C N1 N2 N3 W

LDB [i3], i7 (D-Cache hit) G E C N1 N2 N3 W

LDB [i7], i4 (D-Cache hit) G E E C N1

ADD i6,i7,i8 G E E C N1 N2

ADD i4,i5,i9 G E C
Sun Microelectronics
292

17. Grouping Rules and Stalls
17.7.1.4 Read-After-Write and Interaction with Store Buffer

If a load hits the D-Cache and overlaps a store in the store buffer, the load will

not return data until two clocks after the store updates the D-Cache. The overlap

check is pessimistic, because only the lower 14 bits of the effective memory ad-

dress are checked. If a store is issued one clock earlier than an overlapping load

that hits the D-Cache, the load data will be returned seven clocks later than nor-

mal. If a load misses the D-Cache and if bits 13..4 of the load’s effective memory

address are the same as a store in the store buffer, the load data will not be re-

turned until six clocks after the store leaves the store buffer. If a store is issued

one clock earlier than a D-Cache miss load and bits 13..4 of the address are the

same, the load data will be returned six clocks later than a normal D-Cache miss

load.

MEMBAR #StoreLoad or #MemIssue will block younger loads from returning

data until three clocks after no older stores are outstanding (see Section 17.7.2,

“Store Dependencies,” on page 294). In the best case, a load use will be stalled in

the E Stage until 15 clocks after the previous store is dispatched.

17.7.1.5 Other Timing Issues

Additional clocks are added to the time a load returns data for E-Cache misses

and arbitration for the D- and E-Caches. An E-Cache miss adds at least twelve

clocks plus the System Interconnect latency for the first word of the block, com-

pared to a D-Cache hit. A D-Cache hit following an E-Cache miss returns data

one clock after the E-Cache miss data is returned. A D-Cache miss, E-Cache hit

following an E-Cache miss returns data nine clocks after the last word of data

from the E-Cache miss is delivered on the system interconnect. Back-to-back

E-Cache misses to clean lines can be issued at a maximum rate of four clocks plus

the system latency for the first word of the block. Writeback of dirty data can be

overlapped if the system supports it; the latency to the first word of read data is

at least 18 processor clocks.

LD{X}FSR blocks dispatch of younger floating-point / graphics instructions that

reference floating-point registers, FB{P}fcc, MOVfcc, ST{X}FSR, and LD{X}FSR in-

structions until four clocks after the data is returned in delayed return mode, and

five clocks after the load data is returned otherwise. For example, if there are no

outstanding load misses from the D-Cache:

LDFSR (D-Cache hit) G E C N1 N2 N3 W W1 W2

FMULS f7,f7,f8 G
Sun Microelectronics
293

UltraSPARC User’s Manual
LDD{A} instructions are held in the G Stage until three clocks after the N3 Stage,

or until older loads have returned data. If LDD{A} is dispatched and a miss occurs

on an N2 Stage or earlier load, the instruction will be canceled in the W Stage and

fetched again. It will then be held in the G Stage until three clocks after older

loads have returned data.

FLUSH{W}, {F}MOVr, MOVcc, RDFPRS, STD{A}, loads and stores from an internal

ASI (4x-6x, 76, 77), SAVE, RESTORE, RETURN, DONE, RETRY, WRPR, and MEM-

BAR #Sync instructions cannot be dispatched until three clocks after older loads

have returned data. The instruction is stalled in the G Stage until the N3 Stage of

the earliest outstanding load, if the load is not enqueued. For example:

LD{SB,SH,SW,UB,UH,UW,X}{A}, LD{D}F{A}, LDD{A}, LDSTUB{A}, SWAP{A}, CAS{X}A,

LD{X}FSR, MEMBAR #MemIssue and MEMBAR #StoreLoad are held in the G

Stage if there are already nine outstanding loads. A load is considered outstand-

ing from the clock that it enters the E Stage through the clock that it returns data.

17.7.2 Store Dependencies

A store is considered outstanding from the clock that it enters the E Stage until

two clocks after the data leaves the store buffer. Data leaves the store buffer when

the write is issued to the E-Cache SRAM for cacheable accesses, UDB for non-

cacheable accesses, and internal register for internal ASI. If there is no extra delay,

a noncacheable store or cacheable store that misses the D-Cache will be outstand-

ing for ten clocks after it is dispatched. An internal ASI or cacheable store that

hits the D-Cache will be outstanding for eleven clocks after it is dispatched. If the

last two stores in the store buffer are writing to the same 16-byte block and both

are ready to go to the E-Cache, the store buffer will compress the two entries into

one. This reduces the number of outstanding stores by one. Compression will be

repeated as long as the last two entries are ready to go and are compressible.

ST{B,H,W,X}{A}, STF{A}, STDF{A}, STD{A}, LDSTUB{A}, SWAP{A}, CAS{X}A, FLUSH,

STBAR, MEMBAR #StoreStore , and MEMBAR #LoadStore are not dispatched if

there are already eight outstanding stores. A block store counts as eight outstand-

ing stores when it is dispatched.

If bits 13..4 of a store’s effective memory address are the same as an older load in

the load buffer, the store will remain outstanding until four clocks after the load

is not outstanding.

load (not enqueued) G E C N1 N2 N3 W

SAVE G E C N1
Sun Microelectronics
294

17. Grouping Rules and Stalls
A MEMBAR #LoadStore or #MemIssue will force younger stores to remain out-

standing until four clocks after all older loads are not outstanding. In PSO or

TSO, stores remain outstanding until four clocks after all older loads are not out-

standing. STBAR, MEMBAR #StoreStore , and MEMBAR #MemIssue will pre-

vent a younger store from leaving the store buffer until five clocks after an

S_REPLY is received from the system for all older noncacheable stores. A store in

TSO will remain outstanding until five clocks after an S_REPLY is received for all

older non-cacheable stores.

Additional clocks are added to the time a cacheable store is outstanding due to

E-Cache misses and delays in arbitration for the D- and E-Caches. A minimum of

twelve clocks plus the UPA latency for accessing the last word of the cache block

will be added to the time a cacheable store is outstanding due to an E-Cache

miss. Back-to-back cacheable store misses can be issued at a maximum rate of

thirteen clocks plus the system latency for the last word of the block. Writeback

of dirty data can be overlapped if the system supports it; the latency to the first

word of read data is at least 18 processor clocks.

Noncacheable stores are removed from the store buffer with the same timing as if

the store were an E-Cache hit, provided that the System Interconnect can accept

them. Depending on the system, up to ten non-\cacheable store requests may be

outstanding past the store buffer. A noncacheable store is considered outstanding

on the interconnect for two system clocks (four to six processor clocks) after the

S_REPLY for the store is received. One noncacheable store (possibly compressed)

can be issued every four clocks to the system interconnect.

LDSTUB, SWAP, CAS{X}A, store to internal ASI, block store, FLUSH, and MEMBAR

#Sync instructions are not dispatched until no older stores are outstanding. The

maximum rate of internal ASI stores or atomics is one every 12 clocks.

ST{X}FSR cannot be dispatched in the two groups following another ST{X}FSR.

PDIST cannot be dispatched in the group after a floating-point store or when a

block store is outstanding.

17.8 Floating-Point and Graphic Instructions

Floating-point and graphics instructions that reference floating-point registers are

divided into two classes: A and M. Two of these instructions can be dispatched

together only if they are in different classes.
Sun Microelectronics
295

UltraSPARC User’s Manual
A Class:
F{i,x}TO{s,d}, F{s,d}TO{d,s}, F{s,d}TO{i,x}, FABS{s,d}, FADD{s,d}, FALIGNDATA,

FAND{s}, FANDNOT1{s}, FANDNOT2{s}, FCMP{E}{s,d}, FEXPAND, FMOVr{s,d},

FMOV{s,d}cc, FNAND{s}, FNEG{s,d}, FNOR{s}, FNOT1{s}, FNOT2{s}, FONE{s},

FOR{s}, FORNOT1{s}, FORNOT2{s}, FPADD{16,32}{s}, FPMERGE, FPSUB{16,32}{s},

FSRC1{s}, FSRC2{s}, FSUB{s,d}, FXNOR{s}, FXOR{s}, and FZERO{s}.

M Class:
FCMP{LE,NE,GT,EQ}{16,32}, FDIST, FDIV{s,d}, FMUL{d}8SUx16, FMUL{d}8ULx16,

FMUL{s,d}, FMUL8x16{AL,AU}, FPACK{16,32,FIX}, FsMULd, and FSQRT{s,d}.

FDIV{s,d}, FSQRT{s,d}, and FCMP{LE,NE,GT,EQ}{16,32} instructions break the group;

that is, no earlier instructions are dispatched with these instructions.

17.8.1 Floating-Point and Graphics Instruction Dependencies

Instructions that have the same destination register (in the same register file) can-

not be grouped together. For example:

FBfcc cannot be grouped with an older FCMP{E}{s,d}, even if they reference differ-

ent floating-point condition codes. For example:

It is possible, however, for an FCMP{E}{s,d} to be grouped with an older FBfcc in

the same group. For example:

An FMOVcc that references the same condition code set by a FCMP{E}{s,d} cannot

be in the same or the following group. For example:

FMOVcc cannot be in the same group as FCMP{E}{s,d}, because they are both

A-Class floating-point instructions.

FADD f2, f2, f6 G E C N1 N2 N3 W

LDF [r0+r1], f6 G E C N1 N2 N3 W

FCMP fcc0, f2, f4 G E C N1 N2 N3 W

FBfcc fcc1, target G E C N1 N2 N3 W

FBfcc G E C N1 N2 N3 W

FCMP G E C N1 N2 N3 W

FCMP fcc0, f2, f4 G E C N1 N2 N3 W

FMOVcc fcc0, f6, f8 G E C N1 N2 N3 W
Sun Microelectronics
296

17. Grouping Rules and Stalls
MOVcc based on a floating-point condition code can be in the same group as an

FCMP{E}{s,d}, however, if they reference different condition codes. For example:

Latencies between dependent floating-point and graphics instructions are shown

in Table 17-1, “Latencies for Floating-Point and Graphics Instructions,” on

page 300. Latencies depend on the instruction generating the result (use the left

column of the table to select a row) and the operation using the result (use the

top row of the table to select a column). For example:

FDIV{s,d}, FSQRT{s,d}, block load, block store, ST{X}FSR, and LD{X}FSR instructions

wait in the G Stage for the remaining latency of the previous divide or square

root, even if there is no data dependency. An FGA or FGM instruction (see

Table 17-1) that first enters the G Stage one cycle before an FDIV or FSQRT depen-

dent instruction would be released will be held for one clock, regardless of data

dependency.

FDIV and FSQRT use the floating-point multiplier for final rounding, so an

M-Class operation cannot be dispatched in the third clock before the divide is fin-

ished. A load use stall that occurs in the third or fourth clock before normal di-

vide completion will delay completion by a corresponding amount.

FDIV and FSQRT stall earlier instructions with the same rd (including floating-

point loads) for the same time as a source register dependency.

Graphics instructions, FdTOi, FxTOs, FdTOs, FDIVs, and FSQRTs lock the double-

precision register containing the single-precision result for data dependency

checking. For example:

FCMP fcc0, f2, f4 G E C N1 N2 N3 W

MOVcc fcc1, f6, f8 G E C N1 N2 N3 W

FADDs f2, f3, f0 G E C N1 N2 N3 W

FMULs f6, f1, f2 G E C N1 N2 N3

FADDs f2, f3, f0 G E C N1 N2 N3 W

FMOVs f6,f1,f2 G E C N1 N2

FORs f2, f4, f0 G E C N1 N2 N3 W

FANDs f1, f1, f1 G E C N1 N2 N3 W
Sun Microelectronics
297

UltraSPARC User’s Manual
Floating-point stores other than ST{X}FSR can store the result of a floating-point or

graphics instruction other than FDIV or FSQRT and be in the same group. For ex-

ample:

Floating-point stores of the result of an FDIV or FSQRT are treated the same as a

dependent floating-point instruction.

ST(X)FSR cannot be dispatched in the two groups following a floating-point or

graphics instruction that references the floating-point registers. For example:

To simplify critical timing paths, floating-point operations are usually stalled in

the G Stage until earlier floating-point operations with a different precision com-

plete, regardless of data dependency. This behavior is described more precisely in

the following two rules. Floating-point loads and stores are independent of these

mixed precision rules.

1. A floating-point or graphics instruction that follows an FMOV, FABS, FNEG
of different precision break the group, even if there is no data dependency.

For example:

2. A floating-point or graphics instruction following an operation other than

FMOV, FABS, FNEG, FDIV, FSQRT of different precision is stalled until the

N2 Stage of the earlier operation, even if there is no data dependency. For

example:

As an exception to the previous rule, FDIV or FSQRT can be grouped with an old-

er operation of different precision, but are stalled until the N2 Stage of the earlier

operation otherwise.

FADDs f2, f5, f6 G E C N1 N2 N3 W

STF f6, [address] G E C N1 N2 N3 W

FMULd G E C N1 N2 N3 W

STFSR G E C N1 N2 N3

FMOVs G E C N1 N2 N3 W

FMULd G E C N1 N2 N3 W

FADDs f2, f5, f0 G E C N1 N2 N3 W

FMULd f2, f2, f2 G E C N1 N2
Sun Microelectronics
298

17. Grouping Rules and Stalls
For the preceding two rules, all graphics instructions, FDIVs, FSQRTs, FdTOi,

FsTOx, FiTOd, FxTOs, FsTOd, FdTOs, and FsMULd are considered to be double, even

though a single-precision register is referenced. For example, the following in-

structions can be grouped together:

17.8.2 Floating-Point and Graphics Instruction Latencies

Table 17-1 on page 300 documents the latencies for floating-point and graphics in-

structions. For table entries containing two numbers, premature dispatching oc-

curs when the destination and source precision are different, but both are treated

as double because of a graphics or mixed-precision floating-point instruction. To

avoid the pipe flush overhead, software should explicitly force the use instruction

to be at least the latency number of groups after the source instruction. Mixed

precision bypassing is unlikely to occur with floating-point data. Software sched-

uling is only needed for initializing the PDIST rd register and for graphics instruc-

tions single results used as part of a double-precision graphics source operand, or

vice versa.

The table uses the following abbreviations:

FORs f2, f4, f0 G E C N1 N2 N3 W

FANDs f2, f2, f2 G E C N1 N2 N3 W

Abbrev Meaning

FGA Graphics A-Class instruction

FGM Graphics M-Class instruction

FPA Floating-point A-Class instruction

FPM Floating-point M-Class instruction
Sun Microelectronics
299

UltraSPARC User’s Manual
a. Latency numbers enclosed in square brackets ([]) indicate cases where the hardware may prematurely dispatch a
dependent instruction from the G Stage, cancel it in the W Stage, and then refetch it. This effectively inserts nine
bubbles into the pipe.

Table 17-1 Latencies for Floating-Point and Graphics Instructions

Result used by → FPA or FPM FGA FGM

Result

generated

by:

↓

FADD{s,d}

FSUB{s,d}

F{s,d}TO{i,x}

F{i,x}TO{d,s}

F{s,d}TO{d,s}

FCMP{s,d}

FCMPE{s,d}

FMUL{s,d}

FsMULd

FDIV{s,d}

FSQRT{s,d}

FMOVr{s,d}

FMOVcc{s,d}

FMOV{s,d}

FABS{s,d}

FNEG{s,d}

FPADD{16,32}{s}

FPSUB{16,32}{s}

FALIGNDATA

FPMERGE

FEXPAND

FPACK{16,32,FIX}

FMUL8x16{AL,AU}

FMUL{d}8ULx16

FMUL{d}8SUx16

PDIST{rs1, rs2}

FCMPLE{16,32}

FCMPNE{16,32}

FCMPGT{16,32}

FCMPEQ{16,32}

PDIST {rd}

FPA or FPM

FADD{s,d}

FSUB{s,d}

F{s,d}TO{i,x}

F{i,x}TO{d,s}

F{s,d}TO{d,s}

FMUL{s,d}

FsMULd

3[4]a 4 4 [2]a

FDIVs, FSQRTs 12[13]a 13 13 13

FDIVd, FSQRTd 22[23]a 23 23 23

FGA

FMOV{s,d}

FABS{s,d}

FNEG{s,d}

1 1 1 [2]a

FMOVr{s,d}

FMOVcc{s,d}
2 2 2 [2]a

FPADD{16,32}{s}

FPSUB{16,32}{s}

FALIGNDATA

FPMERGE

FEXPAND

2 1 1[2]a [2]a

FGM

FPACK{16,32,FIX} 4 3 1[4]a [2]a

FMUL8x16{AL,AU}

FMUL{d}8ULx16

FMUL{d}8SUx16

PDIST

4 3 3[4]a 1
Sun Microelectronics
300

Appendixes
A. Debug and Diagnostics Support ... 303

B. Performance Instrumentation ... 319

C. Power Management... 327

D. IEEE 1149.1 Scan Interface .. 329

E. Pin and Signal Descriptions ... 337

F. ASI Names .. 345
Sun Microelectronics
301

UltraSPARC User’s Manual
Sun Microelectronics
302

Debug and Diagnostics Support A
A.1 Overview
All debug and diagnostics accesses are double-word aligned, 64-bit accesses.

Non-aligned accesses cause a mem_address_not_aligned trap. Accesses must use

LDXA/STXA/LDFA/STDFA instructions, except for the instruction cache ASIs

which must use LDDA/STDA/STDFA instructions. Using another type of load

or store will cause a data_access_exception trap (with SFSR.FT=8, Illegal ASI size).

Attempts to accesses these registers while in non-privileged mode cause a

data_access_exception trap (with SFSR.FT=1, privilege violation). User accesses can

be done through system calls to these facilities. See Section 6.9.4, “I-/D-MMU

Synchronous Fault Status Registers (SFSR),” on page 58 for SFSR details.

Caution: A STXA to any internal debug or diagnostic register requires a

MEMBAR #Sync before another load instruction is executed and on or before the

delay slot of a delayed control transfer instruction of any type. This is not just to

guarantee that the result of the STXA is seen; the STXA may corrupt the load data

if there is not an intervening MEMBAR #Sync .

A.2 Diagnostics Control and Accesses
The UltraSPARC diagnostics control and data registers are accessed through

RDASR/WRASR or load/store alternate instructions.

A.3 Dispatch Control Register
ASR 1816

Name: DISPATCH_CONTROL_REG
Sun Microelectronics
303

UltraSPARC User’s Manual
This control register is accessed through ASR 1816. Nonprivileged accesses to this

register cause a privileged_opcode trap. See also Table 10-1, “Machine State After Reset

and in RED_state,” on page 172 for the state of this register after reset.

Figure A-1 Dispatch Control Register (ASR 1816)

MS IEU.multi_scalar—Multi-Scalar Dispatch Control. If cleared, instruction

dispatch is forced to a single instruction per group.

A.4 Floating-Point Control

Two state bits (PSTATE.PEF and FPRS.FEF) in the SPARC-V9 architecture provide

the means to disable direct floating-point execution. If either field is cleared, an

fp_disabled trap is taken when a floating-point instruction is encountered.

Note: Graphics instructions that use the floating-point register file and

instructions that read or update the Graphic Status Register (GSR) are treated as

floating-point instructions. They cause an fp_disabled trap if either PSTATE.PEF or

FPRS.FEF is cleared. See Section 13.5, “Graphics Instructions,” on page 198 for

more information.

A.5 Watchpoint Support

UltraSPARC implements “break before” watchpoint traps; instruction execution is

stopped immediately before the watchpoint memory location is accessed. Table

A-1 on page 305 lists ASIs that are affected by the two watchpoint traps. For

128-bit atomic load and 64-byte block load and store, a watchpoint trap is generat-

ed only if the watchpoint overlaps the lowest addressed 8 bytes of the access.

Note: In order to avoid trapping infinitely, software should emulate the

instruction at the watched address and execute a DONE instruction or turn off

the watchpoint before exiting a watchpoint trap handler.

63 0

MS—

1

Sun Microelectronics
304

A. Debug and Diagnostics Support
A.5.1 Instruction Breakpoint

There is no hardware support for instruction breakpoint in UltraSPARC. The TA

(Trap Always) instruction can be used to set program breakpoints.

A.5.2 Data Watchpoint

Two 64-bit data watchpoint registers provide the means to monitor data accesses

during program execution. When virtual/physical data watchpoint is enabled,

the virtual/physical addresses of all data references are compared against the

content of the corresponding watchpoint register. If a match occurs, a VA_/
PA_watchpoint trap is signalled before the data reference instruction is completed.

The virtual address watchpoint trap has higher priority than the physical address

watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses.

Zero bits in the byte mask causes the comparison to ignore the corresponding

byte(s) in the address. These watchpoint byte masks and the watchpoint enable

bits reside in the LSU_Control_Register. See Section A.6, “LSU_Control_Register,”

on page 306 for a complete description.

A.5.3 Virtual Address (VA) Data Watchpoint Register

Figure A-2 VA Data Watchpoint Register Format (ASI 5816, VA=3816)

Table A-1 ASIs Affected by Watchpoint Traps

ASI Type ASI Range D-MMU
Watchpoint if
Matching VA

Watchpoint if
Matching PA

Translating ASIs

0416..1116,

1816..1916,

2416..2C16,

7016..7116,

7816..7916,

8016..FF16

On

Off

Y

N

Y

Y

Bypass ASIs
1416..1516,

1C16 ..1D16

— N Y

Nontranslating ASIs

4516..6F16,

7616..7716,

7E16..7F16

— N N

63 23 044 43

—DB_VA
Sun Microelectronics
305

UltraSPARC User’s Manual
DB_VA: The 64-bit virtual data watchpoint address.

Note: UltraSPARC-I and UltraSPARC-II support a 44-bit virtual address space.

Software is responsible to write a sign-extended 64-bit address into the VA

watchpoint register. The watchpoint address is sign-extended to 64 bits from bit

43 when read.

A.5.4 Physical Address Data Watchpoint Register

Figure A-3 PA Data Watchpoint Register Format (ASI 5816, VA=4016)

DB_PA: The 41-bit physical data watchpoint address.

Note: UltraSPARC-I and UltraSPARC-II support a 41-bit physical address space.

Software is responsible to write a zero-extended 64-bit address into the watch

point register.

A.6 LSU_Control_Register
ASI 4516, VA=0016

Name: ASI_LSU_CONTROL_REGISTER

• The LSU_Control_Register contains fields that control several memory-related

hardware functions in UltraSPARC. These include I- and D-Caches and

MMUs, bad parity generation, and watchpoint setting. See also Table 10-1,

“Machine State After Reset and in RED_state,” on page 172 for the state of this

register after reset or RED_state trap.

Figure A-4 LSU_Control_Register Access Data Format (ASI 4516)

A.6.1 Cache Control

IC: LSU.I-Cache_enable. If cleared, misses are forced on I-Cache accesses

with no cache fill.

63 23 041 40

—DB_PA

63 1920 4 0

— FMPR IC

1

DC

2

IM

3

DM

40

PM

33 32

VM

25 24

PW

23

VR

22

VW

21

—

4144

—

43

—

42

—

Sun Microelectronics
306

A. Debug and Diagnostics Support
DC: LSU.D-Cache_enable. If cleared, misses are forced on D-Cache accesses

with no cache fill. A FLUSH, DONE, or RETRY instruction is needed after

software changes this bit to ensure the new information is used.

A.6.2 MMU Control

IM: LSU.enable_I-MMU. If cleared, the I-MMU is disabled (pass-through

mode).

DM: LSU.enable_D-MMU. If cleared, the D-MMU is disabled (pass-through

mode).

Note: When the MMU/TLB is disabled, a VA is passed through to a PA.

Accesses are assumed to be non-cacheable with side-effects.

A.6.3 Parity Control

FM<15:0> LSU.parity_mask. If set, UltraSPARC writes will generate incorrect

parity on the E-Cache data bus for bytes corresponding to this mask. The

parity_mask corresponds to the 16 bytes of the E-Cache data bus.

Note: The parity mask is endian-neutral.

A.6.4 Watchpoint Control

Watchpoint control is further discussed in Section A.5, “Watchpoint Support,” on

page 304.

Table A-2 LSU Control Register: Parity Mask Examples

Parity
Mask

Addr of Bytes Affected
FEDC BA98 7654 3210

0000 16 0000 0000 0000 0000

0001 16 0000 0000 0000 0001

2222 16 0010 0010 0010 0010

FFFF16 1111 1111 1111 1111
Sun Microelectronics
307

UltraSPARC User’s Manual
A.6.4.1 Virtual Address Data Watchpoint Enable

VR, VW: LSU.virtual_address_data_watchpoint_enable. If VR/VW is set, a data

read/write that matches the (range of) addresses in the virtual

watchpoint register cause a watchpoint trap. Both VR and VW may be set

to place a watchpoint for either a read or write access.

A.6.4.2 Virtual Address Data Watchpoint Byte Mask

VM<7:0> LSU.virtual_address_data_watchpoint_mask. The

virtual_address_data_watch_point_register contains the virtual address

of a 64-bit word to be watched. The 8-bit

virtual_address_data_watch_point_mask controls which byte(s) within

the 64-bit word should be watched. If all 8 bits are cleared, the virtual

watchpoint is disabled. If watchpoint is enabled and a data reference

overlaps any of the watched bytes in the watchpoint mask, a virtual

watchpoint trap is generated.

A.6.4.3 Physical Address Data Watchpoint Enable

PR, PW: LSU.physical_address_data_watchpoint_enable. If PR/PW is set, a data

read/write that matches the (range of) addresses in the physical

watchpoint register causes a watchpoint trap. Both PR and PW may be

set to place a watchpoint on either a read or write access.

A.6.4.4 Physical Address Data Watchpoint Byte Mask

PM<7:0>: LSU.physical_address_data_watchpoint_mask. The

physical_address_data_watch_point_register contains the physical

address of a 64-bit word to be watched. The 8-bit

physical_address_data_watch_point_mask controls which byte(s) within

the 64-bit word should be watched. If all 8 bits are cleared, the physical

Table A-3 LSU Control Register: VA/PA Data Watchpoint Byte Mask Examples

Watchpoint
Mask

Addr of Bytes Watched
7654 3210

0016 Watchpoint disabled

0116 0000 0001

3216 0011 0010

FF16 1111 1111
Sun Microelectronics
308

A. Debug and Diagnostics Support
watchpoint is disabled. If the watchpoint is enabled and a data reference

overlaps any of the watched bytes in the watchpoint mask, a physical

watchpoint trap is generated.

A.7 I-Cache Diagnostic Accesses

The instruction cache (I-Cache) utilizes the Dynamic Set Prediction1 technique to

realize a set-associative cache with a direct-mapped physical RAM design. The

direct-mapped RAM core is logically divided into two sets. Rather than using the

tag to determine which set contains the requested instructions, a set prediction

from the last access to the I-Cache is used to access the instructions for the cur-

rent fetch.

Figure A-5 Simplified I-Cache Organization (Only 1 Set Shown)

Each set of the I-Cache is divided into four fields per entry:

• The instruction field contains eight 32-bit instructions.

• The tag field contains a 28-bit physical tag and a valid bit.

• The pre-decode field contains eight 4-bit information packets about the

instructions stored.

• The next field contains the LRU bit, next address, branch and set predictions.

There is one physical LRU bit per I-Cache line (i.e. sixteen instructions) but it

is logically replicated for each set. There are four 2-bit dynamic branch

prediction (BRPD) fields, one for each two adjacent instructions. Two sets of

set prediction and next address fields, one for each four instructions.

1. For a description of the Dynamic Set Prediction technique, see the “Rapid Instruction (Pre)fetching and
Dispatching Using Prior (Pre)fetching Predictive Annotations” memo.

instructionpre-decodeBRPDsp
8×32b8×4b4×2b2×11b

Cache

tag
28b

valid
1b

LRU
1b

next
2×1b

 Lines
Sun Microelectronics
309

UltraSPARC User’s Manual
Note: To simplify the implementation, read access to the instruction cache fields

(ASIs 6016 .. 6F16) must use the LDDA instruction instead of LDXA or LDDFA.

Using another type of load causes a data_access_exception trap (with SFSR.FT=8,

Illegal ASI size). LDDA will update two registers. The useful data is in the odd

register, the contents of the even register are undefined.

A.7.1 I-Cache Instruction Fields

ASI 6616, VA<63:14>=0, VA<13>=IC_set, VA<12:3>=IC_addr, VA<2:0>=0

Name: ASI_ICACHE_INSTR

Figure A-6 I-Cache Instruction Access Address Format (ASI 6616)

IC_set: This 1-bit field selects a set (2-way associative).

IC_addr: This 10-bit index <12:3> selects an aligned pair of 32-bit instructions.

Figure A-7 I-Cache Instruction Access Data Format (ASI 6616)

IC_instr: Two 32-bit instruction fields

A.7.2 I-Cache Tag/Valid Fields

ASI 6716, VA<63:14>=0, VA<13>=IC_set, VA<12:5>=IC_addr, VA<4:0>=0

Name: ASI_ICACHE_TAG

Figure A-8 I-Cache Tag/Valid Access Address Format (ASI 6716)

IC_set: This 1-bit field selects a set (2-way associative).

IC_addr: This 8-bit index (VA<12:5>) selects a cache tag.

63 23 0

— —IC_set IC_addr

121314

63 0

IC_instr 0

3233

IC_instr 1

63 45 0

— —IC_set IC_addr

121314
Sun Microelectronics
310

A. Debug and Diagnostics Support
Figure A-9 I-Cache Tag/Valid Field Data Format (ASI 6716)

Undefined: The value of these bits are undefined on reads and must be masked

off by software.

IC_valid: The 1-bit valid field

IC_tag: The 28-bit physical tag field (PA<40:13> of the associated instructions)

A.7.3 I-Cache Predecode Field

ASI 6E16, VA<63:14>=0, VA<13>=IC_set, VA<12:5>=IC_addr, VA<4:3>=IC_line,

VA<2:0>=0

Name: ASI_ICACHE_PRE_DECODE

Figure A-10 I-Cache Predecode Field Access Address Format (ASI 6E16)

IC_set: This 1-bit field selects a set (2-ways).

IC_addr: This 8-bit index (i.e. addr <12:5>) selects an IC_Line.

IC_line: For LDDA accesses, this 2-bit field selects a pair of pre-decode fields in a

64-bit-aligned instruction pair. For STXA accesses, the least significant bit

is ignored. The most significant bit selects four pre-decode fields in a 128-

bit-aligned instruction quad.

Figure A-11 I-Cache Predecode Field LDDA Access Data Format (ASI 6E16)

Figure A-12 I-Cache Predecode Field STXA Access Data Format (ASI 6E16)

63 0

Undefined IC_valid IC_tag

353637 78

Undefined

63 23 0

— —IC_set IC_addr

121314 45

IC_line

63 0

Undefined IC_pdec 0

8 34

IC_pdec 1

7

63 0

Undefined IC_pdec 2

8 34

IC_pdec 3

7

IC_pdec 1IC_pdec 0

12 1116 15
Sun Microelectronics
311

UltraSPARC User’s Manual
Undefined: The value of these bits are undefined on reads and must be masked

off by software.

IC_pdec: The two 4-bit pre-decode fields. The encodings are:

• Bits<3:2> = 00 CALL, BPA, FBA, FBPA or BA

• Bits<3:2> = 01 Not a CALL, JMPL, BPA, FBA, FBPA or BA

• Bits<3:2> = 10 Normal JMPL (do not use return stack)

• Bits<3:2> = 11 Return JMPL (use return stack)

• Bit<1> If clear, indicates a PC-relative CTI.

• Bit<0> If set, indicates a STORE.

Note: The predecode bits are not updated when instructions are loaded into the

cache with ASI_ICACHE_INSTR. They are only accurate for instructions loaded

by instruction cache miss processing.

A.7.4 I-Cache LRU/BRPD/SP/NFA Fields

ASI 6F16, VA<63:14>=0, VA<13>=IC_set, VA<12:3>=IC_addr, VA<2:0>=0

Name: ASI_ICACHE_PRE_NEXT_FIELD

Figure A-13 I-Cache LRU/BRPD/SP/NFA Field Access Address Format (ASI 6F16)

Note: Stores to ASI_ICACHE_PRE_NEXT_FIELD are undefined unless the

instruction cache is disabled via the IC bit of the LSU control register (see

“LSU_Control_Register” on page 306).

IC_set: This 1-bit field selects a set (2-way associative).

IC_addr: this 8-bit index (addr <12:5>) selects an IC_Line.

IC_line: This 1-bit field selects two BRPD and one NFA fields for four 128-bit

aligned instructions.

Figure A-14 I-Cache LRU/BRPD/SP/NFA Field LDDA Access Data Format (ASI 6F16)

63 34 0

— —IC_set IC_addr

121314 5

IC_line

63 910 0

Undefined IC_nfa

22

IC_spIC_lru

25 78

und.

122324

IC_brpd 0 IC_brpd 1

11
Sun Microelectronics
312

A. Debug and Diagnostics Support
Undefined, und: The value of these bits are undefined on reads and must be

masked off by software.

IC_lru: Selects the least recently accessed set of the line corresponding to

IC_addr. There is only one physical lru bit per IC_addr value (i.e. cache

line). The IC_lru field can be read for each value of IC_set and IC_line,

but can only be written when IC_set is zero.

Note: The LRU bit is not updated when instructions are accessed with

ASI_ICACHE_INSTR.

IC_brpd<1:0>: Two 2-bit dynamic branch prediction fields. The encodings are:

• IC_brpd<1> If set, strong prediction

• IC_brpd<0> If set, taken prediction

During I-Cache miss processing, IC_brpd is initialized to likely-taken if either of

the corresponding instructions is a branch with static prediction bit set; other-

wise, IC_brpd is set to likely-not-taken. The prediction bits are subsequently up-

dated according to the dynamic branch history of the corresponding instructions,

as shown in Figure A-15. (Note: This figure is identical to Figure 16-6.)

Figure A-15 Dynamic Branch Prediction State Diagram

IC_sp 1-bit Set-Prediction (SP) field. Predicts the next set to prefetch after

prefetching from the correspond.

IC_nfa 11-bit Next-Field-Address field (NFA<10:0> = VA<13:3>). Selects the next

line and instruction offset within the line to fetch from.

PT/ANT

PT/AT PNT/ATST LT LNT SNTPT,AT

PT/ANT

PNT/AT

PNT/ANT
PNT/ANT

Initialization

PT: Predicted Taken
PNT: Predicted Not Taken
AT: Actual Taken
ANT: Actual Not Taken

ST: Strongly Taken
LT: Likely Taken
SNT: Strongly Not Taken
LNT: Likely Not Taken
Sun Microelectronics
313

UltraSPARC User’s Manual
Note: The branch prediction, set prediction and next field address fields are not

updated when instructions are loaded into the cache with ASI_ICACHE_INSTR.

When a cache line is brought into the I-Cache, the corresponding IC_sp fields are

initialized to the same set as the currently missed line. The corresponding IC_nfa

fields are initialized to the next sequential sub-block.

A.8 D-Cache Diagnostic Accesses

Two D-Cache ASI accesses are supported: data (ASI 4616) and tag/valid (ASI

4716).

A.8.1 D-Cache Data Field

ASI 4616, VA<63:14>=0, VA<13:3>=DC_addr, VA<2:0>=0

Name: ASI_DCACHE_DATA

Figure A-16 D-Cache Data Access Address Format (ASI 4616)

DC_addr: This 11-bit index <13:3> selects a 64-bit data field (16Kb).

Figure A-17 D-Cache Data Access Data Format (ASI 4616)

DC_data: 64-bit data.

A.8.2 D-Cache Tag/Valid Fields

ASI 4716, VA<63:14>=0, VA<13:5>=DC_addr, VA<4:0>=0

Name: ASI_DCACHE_TAG

Figure A-18 D-Cache Tag/Valid Access Address Format (ASI 4716)

63 23 0

— —DC_addr

1314

63 0

DC_data

63 45 0

— —DC_addr

1314
Sun Microelectronics
314

A. Debug and Diagnostics Support
DC_addr: This 9-bit index <13:5> selects a tag/valid field (512 tags).

Figure A-19 D-Cache Tag/Valid Access Data Format (ASI 4716)

DC_tag: The 28-bit physical tag (PA<40:13> of the associated data).

DC_valid: The 2-bit valid field, one for each sub-block (32b block, 16b sub-block).

Bit<1> corresponds to the highest addressed 16 bytes, bit<0> to the

lowest addressed 16 bytes.

A.9 E-Cache Diagnostics Accesses

Separate ASIs are provided for reading (7E16) and writing (7616) the E-cache tags

and data.

Note: During E-Cache diagnostics accesses, the VA is passed through to PA

without page mapping. To prevent interference from instruction prefetching

modifying the E-Cache state, LDXA/STXA instructions which use these ASIs

should be on non physical cacheable pages.

A.9.1 E-Cache Data Fields

ASI 7616 (WRITING) or 7E16 (READING), VA<63:41>=0, VA<40:39>=1,

VA<38:19>=0, VA<18:3>=EC_addr, VA<2:0>=0 (0.5 Mb)

VA<38:20>=0, VA<19:3>=EC_addr, VA<2:0>=0 (1 Mb)

VA<38:21>=0, VA<20:3>=EC_addr, VA<2:0>=0 (2 Mb)

VA<38:22>=0, VA<21:3>=EC_addr, VA<2:0>=0 (4 Mb)

VA<38:23>=0, VA<22:3>=EC_addr, VA<2:0>=0 (8 Mb UltraSPARC-II)

VA<38:24>=0, VA<23:3>=EC_addr, VA<2:0>=0 (16 Mb UltraSPARC-II)

Name: ASI_ECACHE_W (7616), ASI_ECACHE_R (7E16)

Figure A-20 E-Cache Data Access Address Format

63 12 0

— DC_validDC_tag

2930

63 23 0

— —EC_addr

232438394041

—01
Sun Microelectronics
315

UltraSPARC User’s Manual
EC_addr: A 16-bit index <18:3> selects a 64-bit data field from a 0.5 Mb E-Cache.

A 17-bit index <19:3> selects a 64-bit data field from a 1 Mb E-Cache. An

18-bit index <20:3> selects a 64-bit data field from a 2 Mb E-Cache. A

19-bit index <21:3> selects a 64-bit data field from a 4 Mb E-Cache. A

20-bit index <22:3> selects a 64-bit data field from a 8 Mb E-Cache

(UltraSPARC-II only). A 21-bit index <23:3> selects a 64-bit data field

from a 16 Mb E-Cache (UltraSPARC-II only).

Figure A-21 E-Cache Data Access Data Format

EC_data: 64-bit data (for ASI read or write)

A.9.2 E-Cache Tag/State/Parity Field Diagnostics Accesses

ASI 7616 (WRITING) or 7E16 (READING), VA<63:41>=0, VA<40:39>=2,

VA<38:19>=0, VA<18:6>=EC_addr, VA<5:0>=0 (0.5 Mb)

VA<38:20>=0, VA<19:6>=EC_addr, VA<5:0>=0 (1 Mb)

VA<38:21>=0, VA<20:6>=EC_addr, VA<5:0>=0 (2 Mb)

VA<38:22>=0, VA<21:6>=EC_addr, VA<5:0>=0 (4 Mb)

VA<38:23>=0, VA<22:6>=EC_addr, VA<5:0>=0 (8 Mb UltraSPARC-II)

VA<38:24>=0, VA<23:6>=EC_addr, VA<5:0>=0 (16 Mb UltraSPARC-II)

Name: ASI_ECACHE_W (7616), ASI_ECACHE_R (7E16)

Figure A-22 E-Cache Tag Access Address Format

If read, the contents of the E-Cache tag/state/parity fields in the selected E-

Cache line are stored in the E-Cache_tag_data_register. This register can be read

by an LDA with ASI_ECACHE_TAG_DATA; its contents are written to the desti-

nation register. See Section A.9.3, “E-Cache Tag/State/Parity Data Accesses,” on

page 317 for register formats.

63 0

EC_data

63 56 0

— —EC_addr

232438394041

—10
Sun Microelectronics
316

A. Debug and Diagnostics Support
If written, the content of the E-Cache_tag_data_register is written to the selected

E-Cache tag/state/parity fields. The contents of the E-Cache_tag_data_register
are previously updated with STA at ASI_ECACHE_TAG_DATA.

Note: Software must ensure that the two-step operations are done atomically;

e.g., LDXA ASI_ECACHE (TAG) and LDXA ASI_ECACHE_TAG_DATA, STXA

ASI_ECACHE_TAG_DATA and STXA ASI_ECACHE (TAG).

Note: The destination register of an LDXA ASI_ECACHE (TAG) is undefined. It

is recommended to use %g0 as the destination for this ASI access. The contents of

the source register in STXA ASI_ECACHE (TAG) are ignored, but the contents of

the E-Cache_tag_data_register are written to the selected E-Cache line.

A.9.3 E-Cache Tag/State/Parity Data Accesses

ASI 4E16, VA<63:0>=0

Name: ASI_ECACHE_TAG_DATA

Figure A-23 E-Cache Tag/State Access Data Format

EC_tag: 22-bit physical tag field

• EC_tag<21:0>=PA<40:19> of associated data

EC_state: The 3-bit E-Cache state field. Encodings are:

• EC_state<2:0> = xx0 Invalid

• EC_state<2:0> = 001 Shared

• EC_state<2:0> = 011 Exclusive

• EC_state<2:0> = 101 Owner

• EC_state<2:0> = 111 Modified

EC_parity: 4-bit E-Cache tag (odd) parity field.

• EC_parity<3> Parity of EC_state<2:0>

• EC_parity<2> Parity of EC_tag<21:16>

• EC_parity<1> Parity of EC_tag<15:8>

• EC_parity<0> Parity of EC_tag<7:0>

63 2122 0

— EC_tagEC_state

24252829

EC_parity
Sun Microelectronics
317

UltraSPARC User’s Manual
Sun Microelectronics
318

Performance Instrumentation B
B.1 Overview

Up to two performance events can be measured simultaneously in UltraSPARC.

The Performance Control Register (PCR) controls event selection and filtering

(that is, counting user and/or system level events) for a pair of 32-bit Perfor-

mance Instrumentation Counters (PICs).

B.2 Performance Control and Counters

The 64-bit PCR and PIC are accessed through read/write Ancillary State Register

instructions (RDASR/WRASR). PCR and PIC are located at ASRs 16 (1016) and 17

(1116) respectively. Access to the PCR is privileged. Non privileged accesses will

cause a privileged_opcode trap. Non-privileged access to PICs may be restricted by

setting the PCR.PRIV field while in privileged mode. When PCR.PRIV=1, an at-

tempt by non-privileged software to access the PICs causes a privileged_action trap.

Event measurements in non-privileged and/or privileged modes can be con-

trolled by setting the PCR.UT and PCR.ST fields.

Two 32-bit PICs each accumulates over 4 billion events before wrapping around

silently. Extended event logging may be accomplished by periodically reading the

contents of the PICs before each overflows. Additional statistics can be collected

using the two PICs over multiple passes of program execution.

Two events can be measured simultaneously by setting the PCR.select fields

along with the PCR.UT and PCR.ST fields. The selected statistics are reflected

during subsequent accesses to the PICs. The difference between the values read

from the PIC on two reads reflects the number of events that occurred between

them for the selected PICs. Software may only rely on read-to-read counts of the
Sun Microelectronics
319

UltraSPARC User’s Manual
PIC for accurate timing and not on write-to-read counts. See also Table 10-1, “Ma-

chine State After Reset and in RED_state,” on page 172 for the state of these reg-

isters after reset.

Figure B-1 Performance Control Register (PCR)

S1|S0: Two four-bit fields; each selects a performance instrumentation event

from the list in Section B.4.5, “PCR.S0 and PCR.S1 Encoding,” on page

325. The event selected by S0 is counted in PIC.D0; the event selected by

S1 is counted in PIC.D1.

UT: User_trace. If set, events in non-privileged (user) mode are counted. This

may be set along with PCR.ST to count all selected events.

ST: System_trace. If set, events in privileged (system) mode are counted. This

may be set along with PCR.UT to count all selected events.

PRIV: Privileged. If set, non-privileged access to the PIC will cause a

privileged_action trap.

Figure B-2 Performance Instrumentation Counters (PIC)

D1|D0: A pair of 32-bit counters; D0 counts the events selected selected by

PCR.S0; D1 counts the events selected selected by PCR.S1.

63 78 4 0

— S0 PRIV

1

ST

2

UT

3

—

15 14 11

S1

10

—

63 0

D1

3132

D0
Sun Microelectronics
320

B. Performance Instrumentation
B.3 PCR/PIC Accesses
An example of the operational flow in using the performance instrumentation is

shown in Figure B-3.

Figure B-3 PCR/PIC Operational Flow

B.4 Performance Instrumentation Counter Events

B.4.1 Instruction Execution Rates

Cycle_cnt [PIC0,PIC1]
Accumulated cycles. This is similar to the SPARC-V9 TICK register, except that

cycle counting is controlled by the PCR.UT and PCR.ST fields.

Instr_cnt [PIC0,PIC1]
The number of instructions completed. Annulled, mispredicted or trapped

instructions are not counted.

start

set up PCR

end

sel → PCR.sel

accumulate stat

PIC[PCR.sel] → Rd

in PIC

accumulate stat
in PIC

context switch to B

PCR → [saveA1]
PIC → [saveA2]

switch to context B

context switch to A

[saveA1] → PCR

[saveA2] → PIC

PIC[PCR.sel] → Rd

back to context A

accumulate stat
in PIC

PIC[PCR.sel] → Rd

[0,1] → PCR.UT/ST
[0,1] → PCR.PRIV PIC[PCR.sel] → Rd

PIC[PCR.sel] → Rd
Sun Microelectronics
321

UltraSPARC User’s Manual
Using the two counters to measure instruction completion and cycles allows cal-

culation of the average number of instructions completed per cycle.

B.4.2 Grouping (G) Stage Stall Counts

These are the major cause of pipeline stalls (bubbles) from the G Stage of the

pipeline. Stalls are counted for each clock that the associated condition is true.

Dispatch0_IC_miss [PIC0]
I-buffer is empty from I-Cache miss. This includes E-Cache miss processing if an

E-Cache miss also occurs.

Dispatch0_mispred [PIC1]
I-buffer is empty from Branch misprediction. Branch misprediction kills instruc-

tions after the dispatch point, so the total number of pipeline bubbles is approxi-

mately twice as big as measured from this count.

Dispatch0_storeBuf [PIC0]
Store buffer can not hold additional stores, and a store instruction is the first

instruction in the group.

Dispatch0_FP_use [PIC1]
First instruction in the group depends on an earlier floating point result that is

not yet available, but only while the earlier instruction is not stalled for a

Load_use (see B.4.3). Thus, Dispatch0_FP_use and Load_use are mutually

exclusive counts.

Some less common stalls (see Chapter 17, “Grouping Rules and Stalls”) are not

counted by any performance counter, including:

• One cycle stalls for an FGA/FGM instruction entering the G stage following

an FDIV or FSQRT.

B.4.3 Load Use Stall Counts

Stalls are counted for each clock that the associated condition is true.

Load_use [PIC0]
An instruction in the execute stage depends on an earlier load result that is not

yet available. This stalls all instructions in the execute and grouping stages.

Load_use also counts cycles when no instructions are dispatched due to a one

cycle load-load dependency on the first instruction presented to the grouping

logic.
Sun Microelectronics
322

B. Performance Instrumentation
There are also overcounts due to, for example, mispredicted CTIs and dispatched

instructions that are invalidated by traps.

Load_use_RAW [PIC1]
There is a load use in the execute stage and there is a read-after-write hazard on

the oldest outstanding load. This indicates that load data is being delayed by

completion of an earlier store.

Some less common stalls (see Chapter 17, “Grouping Rules and Stalls”) are not

counted by any performance counter, including:

• Stalls associated with WRPR/RDPR and internal ASI loads.

• MEMBAR stalls.

• One cycle stalls due to bad prediction around a change to the Current

Window Pointer (CWP).

B.4.4 Cache Access Statistics

I-, D-, and E-Cache access statistics can be collected. Counts are updated by each

cache access, regardless of whether the access will be used.

IC_ref [PIC0]
I-Cache references. I-Cache references are fetches of up to four instructions from

an aligned block of eight instructions. I-Cache references are generally prefetches

and do not correspond exactly to the instructions executed.

IC_hit [PIC1]
I-Cache hits.

DC_rd [PIC0]
D-Cache read references (including accesses that subsequently trap).

NonD-Cacheable accesses are not counted. Atomic, block load, “internal,” and

“external” bad ASIs, quad precision LDD, and MEMBARs also fall into this class.

Atomic instructions, block loads, “internal” and “external” bad ASIs, quad LDD,

and MEMBARs also fall into this class.

DC_rd_hit [PIC1]
D-Cache read hits are counted in one of two places:

1. When they access the D-Cache tags and do not enter the load buffer

(because it is already empty)

2. When they exit the load buffer (due to a D-Cache miss or a non-

empty load buffer).
Sun Microelectronics
323

UltraSPARC User’s Manual
Loads that hit the D-Cache may be placed in the load buffer for a number of rea-

sons; for example, the load buffer was not empty. Such loads may be turned into

misses if a snoop occurs during their stay in the load buffer (due to an external

request or to an E-Cache miss). In this case they do not count as D-Cache read

hits. See Section 16.3, “Data Stream Issues,” on page 272.

DC_wr [PIC0]
D-Cache write references (including accesses that subsequently trap).

NonD-Cacheable accesses are not counted.

DC_wr_hit [PIC1]
D-Cache write hits.

EC_ref [PIC0]
Total E-Cache references. Non-cacheable accesses are not counted.

EC_hit [PIC1]
Total E-Cache hits.

EC_write_hit_RDO [PIC0]
E-Cache hits that do a read for ownership UPA transaction.

EC_wb [PIC1]
E-Cache misses that do writebacks.

EC_snoop_inv [PIC0]
E-Cache invalidates from the following UPA transactions: S_INV_REQ,

S_CPI_REQS_INV_REQ, S_CPI_REQS_INV_REQ, S_CPI_REQ.

EC_snoop_cb [PIC1]
E-Cache snoop copy-backs from the following UPA transactions: S_CPB_REQ,

S_CPI_REQ, S_CPD_REQ, S_CPB_MSI_REQ.

EC_rd_hit [PIC0]
E-Cache read hits from D-Cache misses.

EC_ic_hit [PIC1]
E-Cache read hits from I-Cache misses.

The E-Cache write hit count is determined by subtracting the read hit and the

instruction hit count from the total E-Cache hit count. The E-Cache write refer-

ence count is determined by subtracting the D-Cache read miss (D-Cache read

references minus D-Cache read hits) and I-Cache misses (I-Cache references

minus I-Cache hits) from the total E-Cache references. Because of store buffer

compression, this is not the same as D-Cache write misses.
Sun Microelectronics
324

B. Performance Instrumentation
Note: A block memory access is counted as a single reference. Atomics count

the read and write individually.

B.4.5 PCR.S0 and PCR.S1 Encoding
Table B-1 PiC.S0 Selection Bit Field Encoding

S0 Value PIC0 Selection

0000 Cycle_cnt

0001 Instr_cnt

0010 Dispatch0_IC_miss

0011 Dispatch0_storeBuf

1000 IC_ref

1001 DC_rd

1010 DC_wr

1011 Load_use

1100 EC_ref

1101 EC_write_hit_RDO

1110 EC_snoop_inv

1111 EC_rd_hit

Table B-2 PIC.S1 Selection Bit Field Encoding

S1 Value PIC1 Selection

0000 Cycle_cnt

0001 Instr_cnt

0010 Dispatch0_mispred

0011 Dispatch0_FP_use

1000 IC_hit

1001 DC_rd_hit

1010 DC_wr_hit

1011 Load_use_RAW

1100 EC_hit

1101 EC_wb

1110 EC_snoop_cb

1111 EC_ic_hit
Sun Microelectronics
325

UltraSPARC User’s Manual
Sun Microelectronics
326

Power Management C
C.1 Overview
Power-down mode is intended to support Energy Star compliance for

UltraSPARC based systems. Energy Star specifies a system power dissipation of

30 watts in the standby mode. To support this, the goal is one-half watt for the

UltraSPARC CPU and one-half watt for the remainder of the module when in the

power-down mode.

C.2 Power-Down Mode
UltraSPARC does not respond to coherency transactions, interrupt vectors or

slave reads when in power-down mode. Before entering power-down mode the

E-Cache must be flushed to memory by software. This flush should be done by

displacement flush if other masters are doing coherent accesses while the flush is

being performed. Cache flushing is described in Section 5.2, “Cache Flushing,” on

page 27.

The system must ensure that no interrupt vectors or slave reads are sent to the

processor once the shutdown sequence begins, because they may not be serviced.

Power-down mode is entered when software executes the privileged SHUT-

DOWN instruction. For a detailed description of the SHUTDOWN instruction,

see Section 13.2, “SHUTDOWN,” on page 195. The external clock is left running

while the shutdown is being processed.
Sun Microelectronics
327

UltraSPARC User’s Manual
C.3 Power-Up
Restart from power-down mode uses the power-on reset (POR) pin. The system

must activate the reset pin with a stable external clock for the same time as a nor-

mal power-on reset. This reset will shut off the external power-down (EPD) sig-

nal (asynchronously if the module clock generator has been disabled), and enable

the clock generator and PLL, like a normal power-up sequence. Using the reset

pin instead of a synchronous wake-up signal eliminates the problems of warm

switching the PLL loops and sampling the wake-up signal without a clock.

When the reset pin is deasserted, UltraSPARC begins RED_state reset processing

just as in a normal power-on reset. The system must provide state information

that indicates to software whether this is a warm start from power-down mode,

or a cold start from a power-on reset.

After reset, software should re-enable transmission of interrupt vectors, and reset

the caches (I-Cache, D-Cache, E-Cache, I-MMU, and D-MMU) as in a normal

Power-on Reset (POR).
Sun Microelectronics
328

IEEE 1149.1 Scan Interface D
D.1 Introduction
UltraSPARC provides an IEEE Std 1149.1-1990 compliant test access port (TAP)

and boundary scan architecture. The primary use of 1149.1 scan interface is for

board-level interconnect testing and diagnosis.

The IEEE 1149.1 test access port and boundary scan architecture consists of three

major parts:

• A test access port controller

• An instruction register

• Numerous public and private test data registers

For information about how to obtain a copy of IEEE Std 1149.1-1990, see the Bib-

liography.

D.2 Interface
The IEEE Std 1149.1-1990 serial scan interface is composed of a set of pins and a

TAP controller state machine that responds to the pins. The five wire IEEE 1149.1

interface is used in UltraSPARC. Table D-1 describes the five pins.
Sun Microelectronics
329

UltraSPARC User’s Manual
D.3 Test Access Port (TAP) Controller

The TAP controller is an synchronous finite state machine with 16-states. Transi-

tions between states occur only at the rising edge of TCK in response to the TMS

signal, or when TRST_L is asserted.

Figure D-1 shows the state machine diagram. The values shown adjacent to state

transitions represents the value of TMS required at the time of a rising edge of

TCK for the transition to occur. Note that the IR states select the instruction regis-

ter and DR states refer to states that may select a test data register, depending on

the active instruction.

D.3.1 TEST-LOGIC-RESET

The TAP controller enters the TEST-LOGIC-RESET state when the TRST_L pin is

asserted or when the TMS signal is held high for at least five clock cycles (inde-

pendent of the original state of the controller). It will remain in this state while

TMS is held high. In this state the test logic is disabled, the instruction register is

initialized to select the Device ID register.

D.3.2 RUN-TEST/IDLE

An intermediate controller state between scan operations. If no instruction is se-

lected, all test data registers retain their current state.

Once the state machine enters the RUN-TEST/IDLE state, it will remain in this

state as long as TMS is held low.

Table D-1 IEEE 1149.1 Signals

Signal I/O Description

TDO O Test data out. This is the scan shift output signal from either the instruction register

or one of the test data registers.

TDI I Test data input. This forms the scan shift in signal for the instruction and various test

data registers.

TMS I This signal is used to sequence the TAP state machine through the appropriate

sequences. Holding this signal high for at least five clock cycles will force the TAP to

the TEST-LOGIC-RESET state.

TCK I Test clock. The inputs TDI and TMS are sampled on the rising edge of TCK and the

TDO output becomes valid after the falling edge of TCK.

TRST_L I The IEEE 1149.1 logic is asynchronously reset when TRST_L goes low.
Sun Microelectronics
330

D. IEEE 1149.1 Scan Interface
D.3.3 SELECT-DR-SCAN

A temporary state in which all test data registers retain their previous state.

SELECT-IR-SCANSELECT-DR-SCANRUN-TEST/IDLE

TEST-LOGIC-RESET

CAPTURE-IRCAPTURE-DR

EXIT-2-IREXIT-1-DR

PAUSE-DR

EXIT-2-IREXIT-2-DR

UPDATE-IRUPDATE-DR

0

PAUSE-IR

SHIFT-DR

0

SHIFT-IR

1 01

1

1

1

0

0

0

1

1

0 0

0

1

1

0

1

0

0

0

1 1 1

0

1

Figure D-1 TAP Controller State Diagram
Sun Microelectronics
331

UltraSPARC User’s Manual
D.3.4 SELECT-IR-SCAN

A temporary state in which all test data registers retain their previous state.

D.3.5 CAPTURE IR/DR

In this state, the selected register (either instruction register or data register) loads

data into its parallel input.

For the instruction register, this corresponds to sampling the 8 bits of status infor-

mation and the loading of the constant ‘01’ pattern into the two least significant

bits.

D.3.6 SHIFT IR/DR

In this state, the IR/DR shift towards their serial output during each rising edge

of TCK.

D.3.7 EXIT-1 IR/DR

A temporary controller state in which the IR/DR retain their previous state.

D.3.8 PAUSE IR/DR

A temporary controller state in which the IR/DR retain their previous state.

This state is provided so that the shifting of data through the instruction register

or the test data register can be temporarily halted (without the need to stop TCK).

D.3.9 EXIT-2 IR/DR

A temporary controller state in which the IR/DR retain their previous state.

D.3.10 UPDATE IR/DR

Data is latched onto the parallel output of the IR/DR from the shift-register path

during this controller state.

The data held at the previous outputs of the instruction register or test data reg-

ister does not change other than in this controller state.
Sun Microelectronics
332

D. IEEE 1149.1 Scan Interface
D.4 Instruction Register
The instruction register is used to select the test to be performed and/or the test

data register to be accessed.

The instruction register is 8 bits wide and consists of a shift-register (with parallel

inputs) and a parallel output stage. The parallel outputs are loaded during the

UPDATE-IR state with the instruction shifted into the shift register stage. This en-

sures that the instruction only changes synchronously at the end of an instruction

register shift or on entry to the TEST-LOGIC-RESET state. The behavior of the in-

struction register in each controller state is shown in Table D-2.

At the start of an instruction register shift (that is, during the CAPTURE-IR state),

the least 2 significant bits load a constant ‘01’ pattern. This aids in fault isolation

of the board-level serial test data path.

D.5 Instructions
The UltraSPARC 8 bit instruction register (IR) implements numerous public and

private instructions. There are 75 valid instructions out of the 256 possible encod-

ings; all invalid encodings default to the BYPASS instruction as defined in IEEE

Std 1149.1-1990. The public instructions implemented are: BYPASS, IDCODE, EX-

TEST, SAMPLE and INTEST. Private instructions are used for manufacturing pur-

poses and should not be used without first consulting with your SPARC sales

representative. The instruction encodings and the test data register selected is

presented in Table D-3.

Table D-2 Instruction register behavior

Controller State Shift Register Parallel Output

TEST-LOGIC-RESET Undefined Set to 0016 (select Device ID
register for shift)

CAPTURE IR Load 01 into IR <1:0> Retain last state

SHIFT IR Shift towards serial output Retain last state

UPDATE IR Retain last state Load from shift-register stage

All other states Retain last state Retain last state
Sun Microelectronics
333

UltraSPARC User’s Manual
D.5.1 Public Instructions

D.5.1.1 BYPASS

Select the BYPASS register as the active test data register.

D.5.1.2 SAMPLE/PRELOAD

Selects the boundary scan register as the active test data register. This instruction

allows for the observing of the I/O pins or shifting in of a value to the boundary

scan chain without disturbing the normal processor operation.

D.5.1.3 EXTEST

Selects the boundary scan register as the active test data register. Used to perform

board level interconnect testing. When active the boundary scan chain drive the

processor pins. Therefore, UltraSPARC cannot operate in its normal functional

mode.

Table D-3 IEEE 1149.1 Instruction Encodings

Instruction IR encoding Scan Chain

BYPASS FF16 bypass

IDCODE FE16 id register

EXTEST 0016 boundary

SAMPLE 0716 boundary

INTEST 0116 boundary

PLLMODE 9F16 pll mode

CLKCTRL 9D16 clock control

RAMWCP BD16 ram control

POWERCUT 8E16 N/A

HIGHZ FD16 bypass

INTEST2 8F16 boundary

FULLSCAN 4016..7F16 internal
Sun Microelectronics
334

D. IEEE 1149.1 Scan Interface
D.5.1.4 INTEST

Selects the boundary scan register as the active test data register. This instruction

allows the boundary scan register to be used sa virtual low speed functional

tester. The on-chip clock is derived from TCK and is issued in the Run-Test/Idle

state of the TAP controller.

D.5.1.5 IDCODE

Select the ID register for shifting.

D.5.2 Private Instructions

All private instructions: PLLMODE, CLKCTRL, RAMWCP, POWERCUT, HIGHZ,

INTEST2, and all versions FULLSCAN should not be used without first consult-

ing your SPARC sales representative. Improper use of any of the private instruc-

tions could permanently damage UltraSPARC and render the device inoperative.

D.6 Public Test Data Registers

D.6.1 Device ID Register

A 32-bit register that is loaded with the UltraSPARC ID upon entering the CAP-

TURE-DR TAP state when the ID instruction is active or during the TEST-LOGIC-

RESET state. Figure D-2 shows the structure of the Device ID Register.

Figure D-2 Device ID Register

The device ID is loaded into the register on the rising edge of TCK in the Cap-

ture-DR state. The value of ID<27:0> is fixed at 002502F16 and the version num-

ber, ID<31:28>, changes as specified in IEEE Std 1149.1-1990.

D.6.2 Bypass Register

Provides a single bit delay between TDI and TDO. During the CAPTURE-DR

controller state, the bypass register (if selected by the current instruction) will

load a logic zero.

011112272831

1000 0001 01110000 0000 0010 0101Version
Sun Microelectronics
335

UltraSPARC User’s Manual
D.6.3 Boundary Scan Register

Allows for the testing of circuitry external to the device; for example, the inter-

connect (EXTEST), setting defined values at the device periphery (EXTEST), the

sampling and examination of the values at the pins without disturbing the sys-

tem (SAMPLE/PRELOAD), and the functional testing of the device itself (IN-

TEST).

The boundary scan register for UltraSPARC is 766 bits long. The mapping be-

tween register bits and the pin signals is described in a Boundary Scan Descrip-

tion Language (BSDL) file available from your SPARC sales representative.

Note: It is recommended that transitions from the Capture-DR TAP controller

state to the Shift-DR controller state take the route through the Exit1-DR,

Pause-DR, and Exit2-DR. It is not recommended to go directly from Capture-DR

to Shift-DR when the boundary scan register is selected.

D.6.4 Private Data Registers

Private data registers should not be accessed without first consulting your

SPARC sales representative.
Sun Microelectronics
336

Pin and Signal Descriptions E
E.1 Introduction
This Appendix describes the UltraSPARC pins and signals in a general way. Con-

sult the relevant data sheets for detailed information about the electrical and me-

chanical characteristics of the processor, including pin and pad assignments. The

“Bibliography” on page 363 describes the available data sheets and how to obtain

them.

E.2 Pin Descriptions

E.2.1 UltraSPARC Data Buffer (UDB) Interface Pins
Table E-1 UltraSPARC Data Buffer (UDB) Interface Pins

Symbol Type Name and Function

UDB_UEH I Asserted when the High UDB is driving EDATA<127:64>, and it has detected an uncor-

rectable ECC error in that data. Synchronous to system clock.

UDB_UEL I Asserted when the Low UDB is driving EDATA<63:0>, and it has detected an uncorrect-

able ECC error in that data. Synchronous to system clock.

UDB_CEH I Asserted when the High UDB is driving EDATA<127:64>, and it has detected and cor-

rected a single-bit error in that data. Synchronous to system clock.

UDB_CEL I Asserted when the Low UDB is driving EDATA<63:0>, and it has detected and corrected

a single-bit error in that data.

UDB_CNTL<4:0> O These pins are connected to the UltraSPARC data buffer chips and control the flow of data

between the UDB registers and UltraSPARC. They are asserted with valid EDATA when

UltraSPARC is driving data to UDB. They are asserted the cycle before the UDB should

drive data to UltraSPARC. Synchronous to system clock.
Sun Microelectronics
337

UltraSPARC User’s Manual
E.2.2 UltraSPARC Data Buffer (UDB) Pins
Table E-2 UltraSPARC Data Buffer (UDB) Pins

Symbol Type Name and Function
SYSDATA<63:0> I/O Connects the UDB chip to the system data interconnect. Two UDB chips are required.

Each UDB chip handles half of the 128-bit system data interconnect.

SYSECC<7:0> I/O ECC check bits for SYSDATA. ECC will be generated and driven by the UDB chip for

SYSDATA transfers from the UDB, and checked if UDB is the receiver.

S_REPLY<3:0> I Reply packet from the system. Used by the UDB for initiating data transfers between

the system and the data buffer chips.

SC_DATA_STALL I This signal is asserted to hold UDB output data to the system or signal the delay in

arrival of input data from the system.

SC_ECC_VALID I Asserted by the system when the ECC of incoming SYSDATA should be checked.

SYSID<4:0> I These pins set the five-bit system node ID of the UDB chip and associated

UltraSPARC from the system interconnect.

SYSCLKA, SYSCLKB I These are buffered differential versions of the PECL system clock.

EDATA<63:0> I/O Connects the UDB with the E-Cache rams and UltraSPARC. On E-Cache misses,

these pins drive data to the E-Cache rams from one of the UDB buffers. On E-Cache

write-backs, these pins input data from the E-Cache rams into one of the UDB buff-

ers. Uncacheable loads and stores transfer data directly between UltraSPARC and the

UDB chips. These pins are also used to transfer data to control/status registers on the

UDB chip.

EDPAR<7:0> I/O Byte parity for EDATA. Odd parity is driven for all EDATA transfers from the UDB,

and checked if UDB is the receiver. EDPAR<0> serves as the parity for EDATA<7:0>.

UDB_CE O This pin is asserted when the UDB detects a correctable ECC error on data received

from the interconnect, i.e. a single bit error.

UDB_UE O This pin is asserted when the UDB detects an uncorrectable ECC error on data

received from the interconnect.

UDB_CNTL<4:0> I These pins are used by UltraSPARC to tell the UDB which internal buffer or register

to access and when to drive and receive data on the external cache data bus.

UDB_H I This pin is asserted high for UDB_H (the UDB chip for EDATA<127:64>) and to zero

for UDB_L (the UDB chip for the least significant 72 bits).

EPD I Asserted by UltraSPARC to cause the UDB to enter power-down mode.

RESET_L I Asserted asynchronously for POR (power-on) resets. Deasserted synchronous to sys-

tem clock. Active low.

TDO O IEEE 1149.1 test data output. A three-state signal driven only when the TAP control-

ler is in the shift-DR state.

TDI I IEEE 1149.1 test data input.

TCK I IEEE 1149.1 test clock input. If this pin is not connected to a clock source then

TRST_L must be asserted during POR.

TMS I IEEE 1149.1 test mode select input. This pin should externally be pulled to logic one

when not driven.

TRST_L I IEEE 1149.1 test reset input (active low). This pin should externally be pulled to logic

one when not driven.
Sun Microelectronics
338

E. Pin and Signal Descriptions
E.2.3 System Interface Pins

E.2.4 E-Cache Interface Pins

Table E-3 System Interface Pins

Symbol Type Name and Function

SYSADDR<35:0> I/O 36-bit bidirectional packet-switched request bus, which includes 1-bit odd-parity. It carries

address bits PA<40:4> of a 41-bit physical address space in the P_REQ and S_REQ transac-

tions described in Chapter 7, “UltraSPARC External Interfaces.” A valid packet on the

SYSADDR bus is identified by the driver asserting the Addr_valid signal. The

SYSADDR and SYSDATA buses are independent, and an address is associated with its

data through ordering rules discussed in a later section. Synchronous to system clock.

ADDR_VALID I/O Bidirectional radial signal between UltraSPARC and the system. Driven by UltraSPARC to

initiate SYSADDR transactions to the system. Driven by the system to initiate coherency,

interrupt or slave transactions to UltraSPARC. Synchronous to system clock.

NODEX_RQ O SYSADDR bus arbitration request. Asserted when UltraSPARC wants to acquire the

SYSADDR bus. Connected to other master ports which share this address bus and the sys-

tem. Synchronous to system clock.

NODE_RQ<2:0> I SYSADDR bus arbitration request from up to three other port masters that might be shar-

ing the SYSADDR bus. Used by UltraSPARC for the distributed SYSADDR arbitration

protocol. Synchronous to system clock.

SC_RQ I SYSADDR bus arbitration request from the system. Used by UltraSPARC for the distrib-

uted SYSADDR bus arbitration protocol. Synchronous to system clock.

S_REPLY<3:0> I System Reply packet from the system to UltraSPARC. Used by UltraSPARC for flow con-

trol and initiating data transfers between the system and the data buffer chips. Synchro-

nous to system clock.

P_REPLY<4:0> O Processor reply packet, driven by UltraSPARC to the system to acknowledge a request

from the system. Synchronous to system clock.

DATA_STALL I This signal is asserted to hold UDB output data to the system, or signal the delay in arrival

of input data from the system.

Table E-4 External Cache Interface Pins

Symbol Type Name and Function

EDATA<127:0> I/O E-Cache Data bus. Connects UltraSPARC to the E-Cache data rams and the data buffer

chips. Synchronous to processor clock.

EDPAR<15:0> I/O Byte parity for EDATA. Odd parity is driven by UltraSPARC when driving EDATA, and

checked by UltraSPARC when E-Cache SRAMs or the data buffer chips are driving

EDATA. EDPAR<0> serves as the parity for EDATA<7:0>. Synchronous to processor

clock.

TDATA<24:0> I/O Bidirectional data bus for E-Cache tag RAMs. Bits 24:22 carry the MOESI state: Modi-

fied, Owned, Exclusive, Shared, Invalid. Bits 21:0 carry the physical address bits

<40:19>. This allows a minimum cache size of 512Kb. All of the TDATA bits are used,

even when the E-Cache is greater than 512Kbytes. This is because there is no sizing in

the tag compare for E-Cache hit generation. Synchronous to processor clock.

TPAR<3:0> I/O E-Cache tag RAM byte parity. Odd Parity is driven by UltraSPARC when driving

TDATA, and checked by UltraSPARC when E-Cache SRAMs are driving. TPAR<0> cov-

ers TDATA<7:0>. Synchronous to processor clock.
Sun Microelectronics
339

UltraSPARC User’s Manual
1. ECAD<19:0> for UltraSPARC-II: corresponds to Physical Address <23:4>

2. ECAT<17:0> for UltraSPARC-II: corresponds to Physical Address <23:6>

E.2.5 Clock Interface Pins

1. SCLK_MODE is present only on UltraSPARC-I.

2. LOOP_CAP is present only on UltraSPARC-I.

3. PHASE_DET_CLK is present only on UltraSPARC-II.

4. ECACHE_22_MODE is present only on UltraSPARC-II.

5. MCAP is present only on UltraSPARC-II.

BYTEWE_L<15:0> O Byte write enables for the E-Cache SRAMs. Bit 0 controls EDATA<127:120>. Bit 15 con-

trols EDATA<7:0>. Byte write control is necessary because the first-level data cache is

write-through. Synchronous to processor clock.

ECAD<17:0>1 O Address for E-Cache data SRAMS. Corresponds to physical address <21:4>. Allows a

maximum 4mbyte E-Cache. Synchronous to processor clock.

ECAT<15:0>2 O Address for E-Cache tag SRAMS. Corresponds to physical address <21:6>. Allows a

maximum 4Mb E-Cache. Synchronous to processor clock.

DSYN_WR_L O Write enable for E-Cache data SRAMS. Active low. Synchronous to processor clock.

DOE_L O Active low operation enable for all E-Cache data SRAM reads and writes. Synchronous

to processor clock.

TSYN_WR_L O Write enable for E-Cache tag SRAMS. Active low. Synchronous to processor clock.

TOE_L O Active low operation enable for all E-Cache tag SRAM reads and writes. Active low.

Synchronous to processor clock.

Table E-5 Clock Interface Pins

Symbol Type Name and Function

CLKA, CLKB I These pins provide UltraSPARC with its primary differential PECL clock source. Full

details of clock requirements are presented in another chapter.

SYSCLKA, SYSCLKB I Buffered differential versions of the PECL system clock, which is a synchronous one

half or one third submultiple of the primary clock. They are used to generate the

phase signal, which allows UltraSPARC to synchronize communication to the sys-

tem and UDBs.

SCLK_MODE1 I Asserted if the system clock frequency is one third of the processor clock frequency,

deasserted if the system clock frequency is one half of the processor clock frequency.

LOOP_CAP2 I Provision for external PLL loop filter capacitor. Currently not needed.

PHASE_DET_CLK3 I Used only for testing PLL Bypass mode.

ECACHE_22_MODE4 I Asserted if 2–2 (Register-latch) SRAMS are used in the E-Cache. Deasserted for 1–1–

1 (pipelined) E-Cache SRAMS. Hardwired externally.

MCAP<3:0>5 I Implementation-dependent module capability bits. May be used to indicate speed

range of the module. Hardwired externally.

Table E-4 External Cache Interface Pins (Continued)

Symbol Type Name and Function
Sun Microelectronics
340

E. Pin and Signal Descriptions
E.2.6 IEEE 1149.1 (JTAG) Interface Pins

E.2.7 Initialization Interface Pins

E.3 Signal Descriptions

E.3.1 UltraSPARC Signals

Table E-6 IEEE 1149.1 (JTAG) Interface Pins

Symbol Type Name and Function

TDO O IEEE 1149.1 test data output. A three-state signal driven only when the Test Access Port (TAP)

controller is in the shift-DR state.

TDI I IEEE 1149.1 test data input.

TCK I IEEE 1149.1 test clock input. If this pin is not connected to a clock source then TRST_L must be

asserted during POR.

TMS I IEEE 1149.1 test mode select input. This pin should externally be pulled high when not driven.

TRST_L I IEEE 1149.1 test reset input (active low). This pin should externally be pulled high when not

driven.

Table E-7 Initialization Interface Pins

Symbol Type Name and Function

RESET_L I Asserted asynchronously for POR (power-on) resets. Deasserted synchronous to system

clock. Active low.

XIR_L I Asserted to signal XIR resets. Acts like an edge triggered non-maskable interrupt. Synchro-

nous to system clock. Active low.

EPD O Asserted when UltraSPARC is in power-down mode.

Table E-8 UltraSPARC Signals

Function Name Count I/O

Data Transfer

E-Cache Data Bus EDATA<127:0> 128 I/O

E-Cache Data Bus Parity EDPAR<15:0> 16 I/O

E-Cache Data Address Bus ECAD<17:0>1 181 O

E-Cache Tag Data Bus TDATA<24:0> 25 I/O

E-Cache Tag Data Parity TPAR<3:0> 4 I/O

E-Cache Tag Address Bus ECAT<15:0>2 162 O

System Address Bus SYSADDR<36:0> 37 I/O

Data Transfer Controls

E-Cache Data Byte Write Enables BYTE_WE_L<15:0> 16 O

Data RAMs Write DSYN_WR_L 1 O

Data RAMs Output Enable DOE_L 1 O

Tag RAM Write TSYN_WR_L 1 O

Tag RAM Output Enable TOE_L 1 O
Sun Microelectronics
341

UltraSPARC User’s Manual
1. ECAD<19:0> for UltraSPARC-II

2. ECAT<17:0> for UltraSPARC-II

3. LOOP_CAP present in UltraSPARC-I only

System Interface Controls

System Reply S_REPLY<3:0> 4 I

Processor Reply P_REPLY<4:0> 5 O

Address Bus Arbitration NODE_RQ<2:0> 3 I

Address Bus Request NODEX_RQ 1 O

Address Packet Valid ADR_VLD 1 I/O

SC Request for interconnect addr bus SC_RQ 1 I

SC Data Stall DATA_STALL 1 I

UDB Interface

Uncorrectable Error (High) UDB_UEH 1 I

Uncorrectable Error (Low) UDB_UEL 1 I

Correctable Error (High) UDB_CEH 1 I

Correctable Error (Low) UDB_CEL 1 I

UDB Control UDB_CNTL<4:0> 5 O

Clock Interface

Differential Clock Input A CLKA 1 I

Differential Clock Input B CLKB 1 I

PLL loop filter connection LOOP_CAP3 1 I

Low Frequency/D.C. signal DC_SPARE 1 I

UDB Clock A (copy) SDBCLKA 1 I

UDB Clock B (copy) SDBCLKB 1 I

Phase Lock Loop Bypass PLLBYPASS 1 I

Level 5 Clock L5CLK 1 O

IEEE 1149.1 (JTAG) Interface/Debug

IEEE 1149.1 Test Data Out TDO 1 O

IEEE 1149.1 Test Data Input TDI 1 I

IEEE 1149.1 Test Clock Input TCK 1 I

IEEE 1149.1 Test Mode Select TMS 1 I

IEEE 1149.1 Test Reset Input TRST_L 1 I

SRAMs Test Mode RAM_TEST 1 I

Test/Debug/Instrument Bus MISC_BIDIR<14:0> 15 I/O

Clock Stopper (debug) EXT_EVENT 1 I/O

Initialization

Reset RESET_L 1 I

XIR Reset (NMI) XIR_L 1 I

Power Down Mode EPD 1 I

Table E-8 UltraSPARC Signals (Continued)

Function Name Count I/O
Sun Microelectronics
342

E. Pin and Signal Descriptions
E.3.2 UltraSPARC Data Buffer (UDB) Signals

1. E_BUS_CLKA present only in UltraSPARC-II.

2. E_BUS_CLKB present only in UltraSPARC-II.

Table E-9 UltraSPARC Data Buffer (UDB) Signals

Function Name Count I/O

Data Transfer

E-Cache Data Bus EDATA<63:0> 64 I/O

E-Cache Data Bus Parity EDPAR<7:0> 8 I/O

System Data Bus SYSDATA<63:0> 64 I/O

System Data Bus ECC SYSECC<7:0> 8 I/O

Error Reporting

Correctable Error UDB_CE 1 O

Uncorrectable Error UDB_UE 1 O

Controls

System Reply S_REPLY<3:0> 4 I

System Identification SYSID<4:0> 5 I

System Clock Input A SYSCLKA 1 I

System Clock Input B SYSCLKB 1 I

External Event EXT_EVENT 1 I

Phase Lock Loop Bypass PLL_BYPASSS 1 I

Reset RESET 1 I

UDB Control (from CPU) UDB_CNTL<4:0> 5 I

UDB High (vs. Low) UDB_H 1 I

System Data Stall SC_DATA_STALL 1 I

System ECC Valid SC_ECC_VALID 1 I

E$ Bus Clock E_BUS_CLKA1 1 I

E$ Bus Clock E_BUS_CLKB2 1 I

IEEE 1149.1 (JTAG) Interface

IEEE 1149.1 Test Data Out TDO 1 O

IEEE 1149.1 Test Data Input TDI 1 I

IEEE 1149.1 Test Clock Input TCK 1 I

IEEE 1149.1 Test Mode Select TMS 1 I

IEEE 1149.1 Test Reset Input TRST_L 1 I
Sun Microelectronics
343

UltraSPARC User’s Manual
Sun Microelectronics
344

ASI Names F
F.1 Introduction

This Appendix lists the names and suggested macro syntax for all supported Ad-

dress Space Identifiers.

Table F-1 ASI Names (Alphabetical)

ASI Name or Macro Syntax Description Value

ASI_AFAR Asynchronous fault address register 4D16

ASI_AFSR Asynchronous fault status register 4C16

ASI_AIUP Primary address space, user privilege 1016

ASI_AIUPL Primary address space, user privilege, little endian 1816

ASI_AIUS Secondary address space, user privilege 1116

ASI_AIUSL Secondary address space, user privilege, little endian 1916

ASI_AS_IF_USER_PRIMARY Primary address space, user privilege 1016

ASI_AS_IF_USER_PRIMARY_LITTLE Primary address space, user privilege, little endian 1816

ASI_AS_IF_USER_SECONDARY Secondary address space, user privilege 1116

ASI_AS_IF_USER_SECONDARY_LITTLE Secondary address space, user privilege, little endian 1916

ASI_BLK_AIUP Primary address space, block load/store, user privilege 7016

ASI_BLK_AIUPL Primary address space, block load/store, user privilege, lit-

tle endian

7816

ASI_BLK_AIUS Secondary address space, block load/store, user privilege 7116

ASI_BLK_AIUSL Secondary address space, block load/store, user privilege,

little endian

7916

ASI_BLK_COMMIT_P Primary address space, block store commit operation E016

ASI_BLK_COMMIT_PRIMARY Primary address space, block store commit operation E016

ASI_BLK_COMMIT_S Secondary address space, block store commit operation E116

ASI_BLK_COMMIT_SECONDARY Secondary address space, block store commit operation E116

ASI_BLK_P Primary address space, block load/store F016
Sun Microelectronics
345

UltraSPARC User’s Manual
ASI_BLK_PL Primary address space, block load/store, little endian F816

ASI_BLK_S Secondary address space, block load/store F116

ASI_BLK_SL Secondary address space, block load/store, little endian F916

ASI_BLOCK_AS_IF_USER_PRIMAR Y Primary address space, block load/store, user privilege 7016

ASI_BLOCK_AS_IF_USER_PRIMARY_LI

TTLE

Primary address space, block load/store, user privilege, lit-

tle endian

7816

ASI_BLOCK_AS_IF_USER_SECONDAR Y Secondary address space, block load/store, user privilege 7116

ASI_BLOCK_AS_IF_USER_SECONDAR

Y_LITTLE

Secondary address space, block load/store, user privilege,

little endian

7916

ASI_BLOCK_PRIMARY Primary address space, block load/store F016

ASI_BLOCK_PRIMARY_LITTLE Primary address space, block load/store, little endian F816

ASI_BLOCK_SECONDARY Secondary address space, block load/store F116

ASI_BLOCK_SECONDARY_LITTLE Secondary address space, block load/store, little endian F916

ASI_D-MMU D-MMU Tag Target Register 5816

ASI_DCACHE_DAT A D-Cache data RAM diagnostics access 4616

ASI_DCACHE_DATA D-Cache data RAM diagnostics access 4616

ASI_DCACHE_TAG D-Cache tag/valid RAM diagnostics access 4716

ASI_DMMU D-MMU PA Data Watchpoint Register 5816

ASI_DMMU D-MMU Secondary Context Register 5816

ASI_DMMU D-MMU Synch. Fault Address Register 5816

ASI_DMMU D-MMU Synch. Fault Status Register 5816

ASI_DMMU D-MMU Tag Target Register 5816

ASI_DMMU D-MMU TLB Tag Access Register 5816

ASI_DMMU D-MMU TSB Register 5816

ASI_DMMU D-MMU VA Data Watchpoint Register 5816

ASI_DMMU I/D MMU Primary Context Register 5816

ASI_DMMU_DEMAP DMMU TLB demap 5F16

ASI_DMMU_TSB_64KB_PTR_RE G D-MMU TSB 64K Pointer Register 5A16

ASI_DMMU_TSB_64KB_PTR_REG D-MMU TSB 64K Pointer Register 5A16

ASI_DMMU_TSB_8KB_PTR_REG D-MMU TSB 8K Pointer Register 5916

ASI_DMMU_TSB_DIRECT_PTR_REG D-MMU TSB Direct Pointer Register 5B16

ASI_DTLB_DATA_ACCESS_REG D-MMU TLB Data Access Register 5D16

ASI_DTLB_DATA_IN_REG D-MMU TLB Data In Register 5C16

ASI_DTLB_TAG_READ_REG D-MMU TLB Tag Read Register 5E16

ASI_ECACHE_R E-Cache data RAM diagnostic read access 7E16

ASI_ECACHE_R E-Cache tag/valid RAM diagnostic read access 7E16

ASI_ECACHE_TAG_DATA E-Cache tag/valid RAM data diagnostic access 4E16

ASI_ECACHE_W E-Cache data RAM diagnostic write access 7616

ASI_ECACHE_W E-Cache tag/valid RAM diagnostic write access 7616

Table F-1 ASI Names (Alphabetical) (Continued)

ASI Name or Macro Syntax Description Value
Sun Microelectronics
346

F. ASI Names
ASI_EC_R E-Cache data RAM diagnostic read access 7E16

ASI_EC_R E-Cache tag/valid RAM diagnostic read access 7E16

ASI_EC_TAG_DATA E-Cache tag/valid RAM data diagnostic access 4E16

ASI_EC_W E-Cache data RAM diagnostic write access 7616

ASI_EC_W E-Cache tag/valid RAM diagnostic write access 7616

ASI_ESTATE_ERROR_EN_REG E-Cache error enable register 4B16

ASI_Fl16_P Primary address space, one 16-bit floating-point load/store D216

ASI_FL16_PL Primary address space, one 16-bit floating-point load/store,

little endian

DA16

ASI_FL16_PRIMARY Primary address space, one 16-bit floating-point load/store D216

ASI_FL16_PRIMARY_LITTLE Primary address space, one 16-bit floating-point load/store,

little endian

DA16

ASI_FL16_S Secondary address space, one 16- bit floating-point load/

store

D316

ASI_FL16_SECONDARY Secondary address space, one 16- bit floating-point load/

store

D316

ASI_FL16_SECONDARY_LITTLE Secondary address space, one 16- bit floating-point load/

store, little endian

DB16

ASI_FL16_SL Secondary address space, one 16- bit floating-point load/

store, little endian

DB16

ASI_FL8_P Primary address space, one 8-bit floating-point load/store D016

ASI_FL8_PL Primary address space, one 8-bit floating-point load/store,

little endian

D816

ASI_FL8_PRIMARY Primary address space, one 8-bit floating-point load/store D016

ASI_FL8_PRIMARY_LITTLE Primary address space, one 8-bit floating-point load/store,

little endian

D816

ASI_FL8_S Secondary address space, one 8-bit floating-point load/

store

D116

ASI_FL8_SECONDARY Secondary address space, one 8-bit floating-point load/

store

D116

ASI_FL8_SECONDARY_LITTLE Secondary address space, one 8-bit floating-point load/

store, little endian

D916

ASI_FL8_SL Secondary address space, one 8-bit floating-point load/

store, little endian

D916

ASI_ICACHE_INSTR I-Cache instruction RAM diagnostic access 6616

ASI_ICACHE_NEXT_FIELD I-Cache next-field RAM diagnostics access 6F16

ASI_ICACHE_PRE_DECODE I-Cache pre-decode RAM diagnostics access 6E16

ASI_ICACHE_TAG I-Cache tag/valid RAM diagnostic access 6716

ASI_IC_INSTR I-Cache instruction RAM diagnostic access 6616

ASI_IC_NEXT_FIELD I-Cache next-field RAM diagnostics access 6F16

ASI_IC_PRE_DECODE I-Cache pre-decode RAM diagnostics access 6E16

Table F-1 ASI Names (Alphabetical) (Continued)

ASI Name or Macro Syntax Description Value
Sun Microelectronics
347

UltraSPARC User’s Manual
ASI_IC_TAG I-Cache tag/valid RAM diagnostic access 6716

ASI_IMMU I-MMU Synchronous Fault Status Register 5016

ASI_IMMU I-MMU Tag Target Register 5016

ASI_IMMU I-MMU TLB Tag Access Register 5016

ASI_IMMU I-MMU TSB Register 5016

ASI_IMMU_DEMAP I-MMU TLB demap 5716

ASI_IMMU_TSB_64KB_PTR_REG I-MMU TSB 64KB Pointer Register 5216

ASI_IMMU_TSB_8KB_PTR_REG I-MMU TSB 8KB Pointer Register 5116

ASI_INTR_DISPATCH_STATUS Interrupt vector dispatch status 4816

ASI_INTR_RECEIVE Interrupt vector receive status 4916

ASI_ITLB_DATA_ACCESS_REG I-MMU TLB Data Access Register 5516

ASI_ITLB_DATA_IN_REG I-MMU TLB Data In Register 5416

ASI_ITLB_TAG_READ_RE G I-MMU TLB Tag Read Register 5616

ASI_ITLB_TAG_READ_REG I-MMU TLB Tag Read Register 5616

ASI_LSU_CONTROL_REG Load/store unit control register 4516

ASI_N Implicit address space, nucleus privilege, TL > 0, 0416

ASI_NL Implicit address space, nucleus privilege, TL > 0, little

endian

0C16

ASI_NUCLEUS Implicit address space, nucleus privilege, TL > 0, 0416

ASI_NUCLEUS_LITTLE Implicit address space, nucleus privilege, TL > 0, little

endian

0C16

ASI_NUCLEUS_QUAD_LDD Cacheable, 128-bit atomic LDDA 2416

ASI_NUCLEUS_QUAD_LDD_L Cacheable, 128-bit atomic LDDA, little endian 2C16

ASI_NUCLEUS_QUAD_LDD_LITTLE Cacheable, 128-bit atomic LDDA, little endian 2C16

ASI_P Implicit primary address space 8016

ASI_PHYS_BYPASS_EC_WITH_EBIT Physical address, noncacheable, with side-effect 1516

ASI_PHYS_BYPASS_EC_WITH_EBIT_L Physical address, noncacheable, with side-effect, little

endian

1D16

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE Physical address, noncacheable, with side-effect, little

endian

1D16

ASI_PHYS_USE_EC Physical address, external cacheable only 1416

ASI_PHYS_USE_EC_L Physical address, external cacheable only, little endian 1C16

ASI_PHYS_USE_EC_LITTLE Physical address, external cacheable only, little endian 1C16

ASI_PL Implicit primary address space, little endian 8816

ASI_PNF Primary address space, no fault 8216

ASI_PNFL Primary address space, no fault, little endian 8A16

ASI_PRIMARY Implicit primary address space 8016

ASI_PRIMARY_LITTLE Implicit primary address space, little endian 8816

ASI_PRIMARY_NO_FAULT Primary address space, no fault 8216

Table F-1 ASI Names (Alphabetical) (Continued)

ASI Name or Macro Syntax Description Value
Sun Microelectronics
348

F. ASI Names
ASI_PRIMARY_NO_FAULT_LITTLE Primary address space, no fault, little endian 8A16

ASI_PST16_PL Primary address space,4 16-bit partial store, little endian CA16

ASI_PST16_PRIMARY Primary address space,4 16-bit partial store C216

ASI_PST16_PRIMARY_LITTLE Primary address space,4 16-bit partial store, little endian CA16

ASI_PST16_S Secondary address space,4 16-bit partial store C316

ASI_PST16_SECONDARY Secondary address space,4 16-bit partial store C316

ASI_PST16_SECONDARY_LITTLE Secondary address space,4 16-bit partial store, little endian CB16

ASI_PST16_SL Secondary address space,4 16-bit partial store, little endian CB16

ASI_PST32_P Primary address space, 2 32-bit partial store C416

ASI_PST32_PL Primary address space, 2 32-bit partial store, little endian CC16

ASI_PST32_PRIMARY Primary address space, 2 32-bit partial store C416

ASI_PST32_PRIMARY_LITTLE Primary address space, 2 32-bit partial store, little endian CC16

ASI_PST32_S Secondary address space, 2 32-bit partial store C516

ASI_PST32_SECONDARY Secondary address space, 2 32-bit partial store C516

ASI_PST32_SECONDARY_LITTLE Secondary address space, 2 32-bit partial store, little endian CD16

ASI_PST32_SL Secondary address space, 2 32-bit partial store, little endian CD16

ASI_PST8_P Primary address space, 8 8-bit partial store C016

ASI_PST8_PL Primary address space, 8 8-bit partial store, little endian C816

ASI_PST8_PRIMARY Primary address space, 8 8-bit partial store C016

ASI_PST8_PRIMARY_LITTLE Primary address space, 8 8-bit partial store, little endian C816

ASI_PST8_S Secondary address space, 8 8-bit partial store C116

ASI_PST8_SECONDARY Secondary address space, 8 8-bit partial store C116

ASI_PST8_SECONDARY_LITTLE Secondary address space, 8 8-bit partial store, little endian C916

ASI_PST8_SL Secondary address space, 8 8-bit partial store, little endian C916

ASI_PSY16_P Primary address space,4 16-bit partial store C216

ASI_S Implicit secondary address space 8116

ASI_SECONDARY Implicit secondary address space 8116

ASI_SECONDARY_LITTLE Implicit secondary address space, little endian 8916

ASI_SECONDARY_NO_FAULT Secondary address space, no fault 8316

ASI_SECONDARY_NO_FAULT_LITTLE Secondary address space, no fault, little endian 8B16

ASI_SL Implicit secondary address space, little endian 8916

ASI_SNF Secondary address space, no fault 8316

ASI_SNFL Secondary address space, no fault, little endian 8B16

ASI_UDB L_CONTROL_R External UDB Control Register, read low 7F16

ASI_UDBH_CONTROL_R External UDB Control Register, read high 7F16

ASI_UDBH_CONTROL_REG_READ External UDB Control Register, read high 7F16

ASI_UDBH_CONTROL_REG_WRITE External UDB Control Register, write high 7716

ASI_UDBH_ERROR_R External UDB Error Register, read high 7F16

Table F-1 ASI Names (Alphabetical) (Continued)

ASI Name or Macro Syntax Description Value
Sun Microelectronics
349

UltraSPARC User’s Manual
ASI_UDBH_ERROR_REG_READ External UDB Error Register, read high 7F16

ASI_UDBH_ERROR_REG_WRITE External UDB Error Register, write high 7716

ASI_UDBL_CONTROL_REG_READ External UDB Control Register, read low 7F16

ASI_UDBL_CONTROL_REG_WRITE External UDB Control Register, write low 7716

ASI_UDBL_ERROR_R External UDB Error Register, read low 7F16

ASI_UDBL_ERROR_REG_READ External UDB Error Register, read low 7F16

ASI_UDBL_ERROR_REG_WRITE External UDB Error Register, write low 7716

ASI_UDB_CONTROL_W External UDB Control Register, write high 7716

ASI_UDB_CONTROL_W External UDB Control Register, write low 7716

ASI_UDB_ERROR_W External UDB Error Register, write high 7716

ASI_UDB_ERROR_W External UDB Error Register, write low 7716

ASI_UDB_INTR_R Incoming interrupt vector data register 0 7F16

ASI_UDB_INTR_R Incoming interrupt vector data register 1 7F16

ASI_UDB_INTR_R Incoming interrupt vector data register 2 7F16

ASI_UDB_INTR_W Interrupt vector dispatch 7716

ASI_UDB_INTR_W Outgoing interrupt vector data register 0 7716

ASI_UDB_INTR_W Outgoing interrupt vector data register 1 7716

ASI_UDB_INTR_W Outgoing interrupt vector data register 2 7716

ASI_UPA_CONFIG_REG UPA configuration register 4A16

Table F-1 ASI Names (Alphabetical) (Continued)

ASI Name or Macro Syntax Description Value
Sun Microelectronics
350

Differences BetweenUltraSPARC Models G
G.1 Introduction
This Appendix documents the technical differences between the UltraSPARC

models described in this manual. These models are:

• UltraSPARC-I

• UltraSPARC-II

G.2 Summary
UltraSPARC-I is the base processor model. UltraSPARC-II supports the following

enhancements:

• Reduced gate dimensions (0.35 µ) and faster cycles times (4 ns)

• 8 Mb and 16 Mb E-Cache sizes

• Additional Processor : System clock ratios

• Use of reduced cost / increased density E-Cache SRAMs

• Support for PREFETCH{A} instructions

• Three outstanding Read transactions, instead of only one

• Two outstanding Writeback transactions, instead of only one

• Ability to programmatically limit the number of outstanding Read and

Writeback transactions
Sun Microelectronics
351

UltraSPARC User’s Manual
G.3 References to Model-Specific Information
Table G-1 lists the pages within the UltraSPARC User’s Manual that contain mod-

el-specific information.

Table G-1 UltraSPARC Model-Specific Information

Page I II Description

4 ✓ ✓ Implementation technologies and cycle times

7 ✓ ✓ Number of trap levels

10 ✓ ✓ E-Cache sizes

10 ✓ ✓ E-Cache SRAM modes

10 ✓ ✓ System : Processor clock frequency ratios

36 ✓ Support for the PREFETCH{A} instructions

73 ✓ ✓ Number of bits in E-Cache Tag Address

73 ✓ ✓ Number of bits in E-Cache Data Address

77 ✓ ✓ E-Cache sizes

77 ✓ ✓ Number of read buffer entries

78 ✓ ✓ Number of Writeback buffer entries

79 ✓ ✓ Timing for coherent read hit (1–1–1 Mode)

80 ✓ Timing for coherent read hit (2–2 Mode)

81 ✓ ✓ Timing for coherent write hit to M State line (1–1–1 Mode)

81 ✓ Timing for coherent write hit to M State line (2–2 Mode)

82 ✓ ✓ Timing for coherent write hit with E-to-M State transsition (1–1–1 Mode)

82 ✓ ✓ Timing overlap for tag read / data write for coherent write (1–1–1 Mode)

83 ✓ ✓ Read-to-write bus turnaround penalty (1–1–1 Mode)

96 ✓ Support for the PREFETCH{A} instructions

102 ✓ ✓ Number of outstanding ReadToShare transactions

103 ✓ ✓ Number of outstanding ReadToOwn transactions

104 ✓ ✓ Number of outstanding ReadToDiscard transactions

110 ✓ ✓ Number of outstanding NonCachedRead transactions

110 ✓ ✓ Number of outstanding NonCachedBlockRead transactions

112 ✓ ✓ Worst-Case Delay Between S_REQ and P_REPLY when NDP=1

113 ✓ ✓ Number of outstanding Writeback transactions

126 ✓ ✓ Number of outstanding read transactions

128 ✓ Limited transaction types before Writeback

128 ✓ Limited number of outstanding transactions in a class

128 ✓ Programmatically limiting the number of outstanding transactions in a class

130 ✓ Number of outstanding Writeback / dirty victim read transaactions

130 ✓ Number of outstanding Writeback / dirty victim read transaactions

154 ✓ MCAP field of UPA_CONFIG register

154 ✓ CLK_MODE field of UPA_CONFIG register
Sun Microelectronics
352

G. Differences Between UltraSPARC Models
155 ✓ E$ field of UPA_CONFIG register

155 ✓ ELIM field of UPA_CONFIG register

155 ✓ WB subfield in PCON field of UPA_CONFIG register

155 ✓ SCIQ0 subfield in PCON field of UPA_CONFIG register

155 ✓ Allowable combinations of values for WB and SCIQ0 subfields in PCON field of

UPA_CONFIG register

172 ✓ ✓ VER.impl values

173 ✓ Reset values for MCAP field of UPA_CONFIG register

173 ✓ Reset values for CLK_MODE field of UPA_CONFIG register

173 ✓ Reset values for E$ field of UPA_CONFIG register

173 ✓ Reset values for ELIM field of UPA_CONFIG register

173 ✓ Reset values for WB subfield in PCON field of UPA_CONFIG register

173 ✓ Reset values for SCIQ0 subfield in PCON field of UPA_CONFIG register

194 ✓ PREFETCH{A} unimplemented

241 ✓ ✓ VER.impl values

248 ✓ PREFETCH{A} unimplemented

248 ✓ PREFETCH{A} fcn=0..4 implemented

274 ✓ ✓ D-Cache Miss, E-Cache hit latency depends on SRAM mode

275 ✓ ✓ Load buffer depth optimized for 1–1–1 mode

277 ✓ ✓ E-Cache accessed every other cycle in 2–2 mode

278 ✓ ✓ Read-toWrite bus turnaround penalty in 1–1–1 mode only

284 ✓ CTI at end of cache line not dispatched until delay slot fetched

315 ✓ VA encoding to access 8 and 16 Mb E-Cache data fields

316 ✓ VA encoding to access 8 and 16 Mb E-Cache tag/state/parity fields

340 ✓ ✓ Number of bits in ECAT interface

340 ✓ ✓ Number of bits in ECAD interface

340 ✓ SCLK_MODE pin is present only in UltraSPARC-I

340 ✓ LOOP_CAP pin present only in UltraSPARC-I

340 ✓ PHASE_DET_CLK pin present only in UltraSPARC-II

340 ✓ ECACHE_22_MODE pin present only in UltraSPARC-II

340 ✓ MCAP pins present only in UltraSPARC-II

341 ✓ ✓ Number of bits in ECAD interface

341 ✓ ✓ Number of bits in ECAT interface

342 ✓ LOOP_CAP pin present only in UltraSPARC-I

343 ✓ E_BUS_CLKA signal present only in UltraSPARC-II

343 ✓ E_BUS_CLKB signal present only in UltraSPARC-II

Table G-1 UltraSPARC Model-Specific Information

Page I II Description
Sun Microelectronics
353

UltraSPARC User’s Manual
Sun Microelectronics
354

Back Matter
Glossary ... 357

Bibliography .. 363

Index .. 367
Sun Microelectronics
355

UltraSPARC User’s Manual
Sun Microelectronics
356

Glossary
This glossary defines some important words and acronyms used throughout this

manual. Italicized words within definitions are further defined elsewhere in the

list.

aliases:

Two virtual addresses are aliases of each other if they refer to the same physi-

cal address.

ASI:

Abbreviation for Address Space Identifier.

clean window:

A clean register window is one in which all of the registers contain either zero

or a valid address from the current address space or valid data from the cur-

rent address space.

coherence:

A set of protocols guaranteeing that all memory accesses are globally visible

to all caches on a shared-memory bus.

consistency:

See coherence.

context:

A set of translations used to support a particular address space. See also

MMU.

copyback:

The process of copying back a cache line in response to a hit while snooping.
Sun Microelectronics
357

UltraSPARC User’s Manual
CPI:
Cycles per instruction. The number of clock cycles it takes to execute one

instruction.

cross call:
An interprocessor call in a multi-processor system.

current window:
The block of 24 r registers to which the Current Window Pointer (CWP) regis-

ter points.

demap:
To invalidate a mapping in the MMU.

dispatch:
To issue a fetched instruction to one or more functional units for execution.

fccN:
One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

floating-point exception:
An exception that occurs during the execution of an FPop instruction while

the corresponding bit in FSR.TEM is set to 1. The exceptions are: unfinished_
FPop, unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register,
and IEEE_754_exception.

floating-point IEEE-754 exception:
A floating-point exception, as specified by IEEE Std 754-1985.

floating-point trap type:
The specific type of a floating-point exception, encoded in the FSR.ftt field.

implementation-dependent:
An aspect of the architecture that may legitimately vary among implementa-

tions. In many cases, the permitted range of variation is specified in the

SPARC-V9 standard. When a range is specified, compliant implementations

shall not deviate from that range.

instruction set architecture (ISA):
An ISA defines instructions, registers, instruction and data memory, the effect

of executed instructions on the registers and memory, and an algorithm for

controlling instruction execution. An ISA does not define clock cycle times,

cycles per instruction, data paths, etc.

ISA:
Abbreviation for instruction set architecture.
Sun Microelectronics
358

. Glossary
may:
A key word indicating flexibility of choice with no implied preference.

Memory Management Unit (MMU):
An MMU is a mechanism that implements a policy for address translation

and protection among contexts. See also virtual address, physical address,
and context.

module:
A master or slave device that attaches to the shared-memory bus.

next program counter (nPC):
A register that contains the address of the instruction to be executed next, if a

trap does not occur.

non-privileged:
An adjective that describes (1) the state of the processor when

PSTATE.PRIV=0, i.e., non-privileged mode; (2) processor state that is accessi-

ble to software while the processor is in either privileged mode or non-privi-
leged mode; e.g., non-privileged registers, non-privileged ASRs, or, in

general, non-privileged state; (3) an instruction that can be executed when the

processor is in either privileged mode or non-privileged mode.

non-privileged mode:
The mode in which processor is operating when PSTATE.PRIV=0. See also

privileged.

NWINDOWS:
The number of register windows present in a particular implementation.

optional:
A feature not required for SPARC-V9 compliance.

physical address:
An address that maps real physical memory or I/O device space. See also vir-
tual address.

prefetchable:
A memory location for which the system designer has determined that no

undesirable effects will occur if a PREFETCH operation to that location is

allowed to succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or

cause external events to occur. For example, some I/O devices are designed

with registers that clear on read; others have registers that initiate operations

when read. See side effect.
Sun Microelectronics
359

UltraSPARC User’s Manual
privileged:
An adjective that describes (1) the state of the processor when

PSTATE.PRIV=1, that is, privileged mode; (2) processor state that is only

accessible to software while the processor is in privileged mode; e.g., privi-

leged registers, privileged ASRs, or, in general, privileged state; (3) an instruc-

tion that can be executed only when the processor is in privileged mode.

privileged mode:
The processor is operating in privileged mode when PSTATE.PRIV=1.

program counter (PC):
A register that contains the address of the instruction currently being exe-

cuted by the IU.

RED_state:
Reset, Error, and Debug state. The processor is operating in RED_state when

PSTATE.RED=1.

restricted:
An adjective used to describe an address space identifier (ASI) that may be

accessed only while the processor is operating in privileged mode.

reserved:
Used to describe an instruction field, certain bit combinations within an

instruction field, or a register field that is reserved for definition by future

versions of the architecture. A reserved field should only be written to zero

by software. A reserved register field should read as zero in hardware; soft-

ware intended to run on future versions of SPARC-V9 should not assume that

the field will read as zero or any other particular value. Throughout this doc-

ument, figures illustrating registers and instruction encodings always indi-

cate reserved fields with an em dash ‘—’.

reset trap:
A vectored transfer of control to privileged software through a fixed-address

reset trap table. Reset traps cause entry into RED_state.

rs1, rs2, rd:
The integer register operands of an instruction. rs1 and rs2 are the source reg-

isters; rd is the destination register.

shall:
A key word indicating a mandatory requirement. Designers shall implement

all such mandatory requirements to ensure inter-operability with other

SPARC-V9-conformant products. The key word “must” is used interchange-

ably with the key word shall.
Sun Microelectronics
360

. Glossary
should:
A key word indicating flexibility of choice with a strongly preferred imple-

mentation. The phrase “it is recommended” is used interchangeably with the

key word should.

side effect:
A memory location is deemed to have side effects if additional actions

beyond the reading or writing of data may occur when a memory operation

on that location is allowed to succeed. Locations with side effects include

those that, when accessed, change state or cause external events to occur. For

example, some I/O devices contain registers that clear on read, others have

registers that initiate operations when read.

snooping:
The process of maintaining coherency between caches in a shared-memory

bus architecture. All cache controllers monitor (snoop) the bus to determine

whether they have a copy of a shared cache block.

speculative load:
A load operation (e.g., non-faulting load) that is carried out before it is known

whether the result of the operation is required. These accesses typically are

used to speed program execution. An implementation, through a combina-

tion of hardware and system software, must nullify speculative loads on

memory locations that have side effects; otherwise, such accesses produce

unpredictable results.

supervisor software:
Software that executes when the processor is in privileged mode.

TLB hit:
The desired translation is present in the on-chip TLB.

TLB miss:
The desired translation is not present in the on-chip TLB.

Translation Lookaside Buffer (TLB):
A hardware cache located within the MMU, which contains copies of recently

used translations. Technically, there are separate TLBs for the instruction and

data paths; the I-MMU contains the iTLB and the D-MMU the dTLB.

trap:
A vectored transfer of control to supervisor software through a table, the

address of which is specified by the privileged Trap Base Address (TBA) reg-

ister.
Sun Microelectronics
361

UltraSPARC User’s Manual
unassigned:
A value (for example, an ASI number), the semantics of which are not archi-

tecturally mandated and which may be determined independently by each

implementation (preferably within any guidelines given).

undefined:
An aspect of the architecture that has deliberately been left unspecified. Soft-

ware should have no expectation of, nor make any assumptions about, an

undefined feature or behavior. Use of such a feature may deliver random

results, may or may not cause a trap, may vary among implementations, and

may vary with time on a given implementation.

unimplemented:
An architectural feature that is not directly executed in hardware because it is

optional or is emulated in software.

unpredictable:
Synonymous with undefined.

unrestricted:
An adjective used to describe an address space identifier (ASI) that may be

used regardless of the processor mode; that is, regardless of the value of

PSTATE.PRIV.

virtual address:
An address produced by a processor that maps all system-wide, program-vis-

ible memory. Virtual addresses usually are translated by a combination of

hardware and software to physical addresses, which can be used to access

physical memory.

writeback:
The process of writing a dirty cache line back to memory before it is refilled.
Sun Microelectronics
362

Bibliography
General References

Books

[Weaver, David L., editor.] The SPARC Architecture Manual, Version 8, Prentice-Hall,

Inc., 1992.

Weaver, David L., and Tom Germond, eds. The SPARC Architecture Manual, Version 9,

Prentice-Hall, Inc., 1994.

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, IEEE,

New York, NY, 1985.

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std

1149.1-1990, IEEE, New York, NY, 1990.

Papers

Boney, Joel. “SPARC Version 9 Points the Way to the Next Generation RISC,” Sun-
World, October 1992, pp. 100-105.

Greenley, D., et. al., “UltraSPARC™: The Next Generation Superscalar 64-bit

SPARC,” 40th Annual CompCon, 1995.

Kaneda, Shigeo. “A Class of Odd-Weight-Column SEC-DED-SbED Codes for Mem-

ory System Applications.” IEEE Transactions on Computers, August 1984.

Kohn, L., et. al., ”The Visual Instruction Set (VIS) in UltraSPARC™,” 40th annual

CompCon, 1995.

Tremblay, Marc. “A Fast and Flexible Performance Simulator for Microarchitecture

Trade-off Analysis on UltraSPARC,” DAC 95 Proceedings.
Sun Microelectronics
363

UltraSPARC User’s Manual
Zhou, C., et. al., “MPEG Video Decoding with UltraSPARC Visual Instruction Set,”

40th Annual CompCon, 1995.

Sun Microelectronics (SME) Publications
These books and papers are available in printed form, and some are also available

through the World Wide Web. See “On Line Resources” below for information about

the SME WWW pages.

Data Sheets

UltraSPARC-I Data Sheet (STP1030).

UltraSPARC-I Data Buffer (UDB) Data Sheet (STP1080).

UltraSPARC-I Crossbar Switch (XBI) Data Sheet (STP2230SOP).

UltraSPARC-I UPA-To-SBUS Interface Data Sheet (STP2220BGA).

UltraSPARC-I Reset/Interrupt/Clock Controller Data Sheet (STP2210QFP).

UltraSPARC-I Uniprocessor System Controller Data Sheet (STP2200BGA).

UltraSPARC-I UPA Modules Data Sheet (STP5110).

UltraSPARC-II Data Sheet (STP1031).

UltraSPARC-II Data Buffer (UDB) Data Sheet (STP1081).

UltraSPARC-II UPA Modules Data Sheet (STP5211).

User’s Guides

UltraSPARC User’s Guide (STP1030-UG).

UltraSPARC-I Crossbar Switch (XBI) User’s Guide (STP2230SOP-UG).

UltraSPARC-I UPA-To-SBUS Interface User’s Guide (STP2220BGA-UG).

UltraSPARC-I Reset/Interrupt/Clock Controller User’s Guide (STP2210QFP-UG).

UltraSPARC-I Uniprocessor System Controller User’s Guide (STP2200BGA-UG).

Other Materials

UltraSPARC: The Net Engine Brochure (STB0090).

UltraSPARC Nested Trap Whitepaper (STB0045).
Sun Microelectronics
364

. Bibliography
UltraSPARC Evaluating Processor Performance Whitepaper (STB0014).

UltraSPARC-II Advanced Branch Prediction and Single Cycle Following Whitepaper

(STB0023).

UltraSPARC-II Advanced Memory Structure Whitepaper (STB0022).

UltraSPARC-II Whitepaper (STB0114).

UltraSPARC-II Prefetch Whitepaper (STB0116).

UltraSPARC-II Multiple Outstanding Requests Whitepaper (STB0117).

How to Contact SME
Sun Microelectronics (SME) is a division of:

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA, U.S.A. 94043
Phone: (408) 774-8545
FAX: (408) 774-8537

On Line Resources
The Sun Microelectronics WWW page is located at:

http://www.sun.com/sparc

It contains the latest information about the entire UltraSPARC product line, in-

cluding HTML and Postscript copies of the UltraSPARC-I and UltraSPARC-II

data sheets.
Sun Microelectronics
365

UltraSPARC User’s Manual
Sun Microelectronics
366

Index
A
A Class instructions 296
ACC field of SPARC-V8 Reference MMU PTE 44

accesses

diagnostic ASI 29

I/O 33

with side-effects 31, 257 to 258

Accumulated Exception (aexc) field of FSR

register 245, 247
active test data register 334

ADDR_VALID pin 339

Addr_Valid signal 84 to 86, 88
asserted for first cycle of two-cycle packet 88

deasserted for second cycle of two-cycle

packet 88

driven by UltraSPARC-I 88

during reset 88

last state 84

maintained by holding amplifiers 88

rules for assertion and deassertion 88
address

physical 21

address alias 17, 24, 146

illegal 28

address generation adder 6

Address Mask 240

Address Mask (AM) field of PSTATE register 48

to 49, 51, 145, 167, 220, 238 to 239

Address Space Identifier (ASI) 145 to 146, 255,

357

address translation

virtual-to-physical 21 to 22

ADR_VLD signal 342

alias 357
address 17, 28

boundary 28

boundary, minimum 28

of prediction bits, illustrated 265

alignaddr_offset field of GSR register 198, 214

ALIGNADDRESS instruction 198, 214

ALIGNADDRESS_LITTLE instruction 198, 214

aligning branch targets 262
alignment instructions 214

Alternate Global Registers 252

AM, see Address Mask (AM) field of PSTATE
register

Ancillary State Register (ASR) 156

annex register file 14

annulled slot 268
arbiter logic 84

arbitration 87

conflict 274

cycle 87

E-Cache 283

protocol 85

protocol, features 85

protocol, SYSADDR bus 84
Arithmetic and Logic Unit (ALU) 7, 14

ARRAY16 instruction 222

ARRAY32 instruction 222
Sun Microelectronics
367

UltraSPARC User’s Manual B
ARRAY8 instruction 222

ASI field of SFSR register 58
ASI, see Alternate Space Identifier (ASI) field of

SFSR register
ASI_AS_IF_USER_PRIMARY 34, 50

ASI_AS_IF_USER_PRIMARY_LITTLE 34

ASI_AS_IF_USER_SECONDARY 34, 50

ASI_AS_IF_USER_SECONDARY_LITTLE 34

ASI_ASYNC_FAULT_ADDRESS 183

ASI_ASYNC_FAULT_STATUS 181

ASI_BLK_COMMIT_PRIMARY 28 to 29

ASI_BLK_COMMIT_SECONDARY 28 to 29

ASI_DCACHE_DATA 314

ASI_DCACHE_TAG 314

ASI_ECACHE 315

ASI_ECACHE_TAG_DATA 316 to 317

ASI_ESTATE_ERROR_EN_REG 179

ASI_ICACHE_INSTR 310, 312 to 314

ASI_ICACHE_PRE_DECODE 311

ASI_ICACHE_PRE_NEXT_FIELD 312

ASI_ICACHE_TAG 310

ASI_INTR_DISPATCH_STATUS 161, 164 to 165

ASI_INTR_RECEIVE 162, 165 to 166

ASI_LSU_CONTROL_REGISTER 306

ASI_NUCLEUS 34, 50, 53

ASI_NUCLEUS_LITTLE 34, 53

ASI_PHYS_* 54

ASI_PHYS_BYPASS_EC_WITH_EBIT 49, 54, 59,

68

ASI_PHYS_BYPASS_EC_WITH_EBIT_

LITTLE 49, 68

ASI_PHYS_USE_EC 19, 34, 68

ASI_PHYS_USE_EC_LITTLE 34, 68

ASI_PRIMARY 34, 53, 58

ASI_PRIMARY_LITTLE 34, 53, 58

ASI_PRIMARY_NO_FAULT 36, 42, 49 to 51

ASI_PRIMARY_NO_FAULT_LITTLE 36, 42, 49,

51

ASI_REG Ancillary State Register (ASR) 156
ASI_SDB_INTR 164 to 165

ASI_SDBH_CONTROL_RE 185

ASI_SDBH_ERROR_REG 184

ASI_SDBL_CONTROL_REG 185

ASI_SDBL_ERROR_REG 184

ASI_SECONDARY 34

ASI_SECONDARY_LITTLE 34

ASI_SECONDARY_NO_FAULT 36, 42, 49 to 51

ASI_SECONDARY_NO_FAULT_LITTLE 36, 42,

49, 51

ASIs that support atomic accesses 34

Asynchronous Fault Address Register

(AFAR) 175, 178, 182
Asynchronous Fault Status Register 122

Asynchronous Fault Status Register (AFSR) 175

to 176, 178, 180 to 181
non-sticky bit overwrite policy 185

atomic

accesses with non-faulting ASIs 35

atomic accesses 34
supported ASIs 34

atomic instructions

in cacheable domain 34

atomic load-store instructions 29

avoiding the bus turn-around penalty 278

B
back-to-back cacheable store misses 295

band interleaved images 196

band sequential images 196

bandwidth

load 82

peak store 82

big-endian byte order 145, 226

bit vector concatenation 11

block commit store 18

block copy inner loop

pseudo-code 234
block load 9, 292

block load instructions 3, 19, 29, 38, 230

block memory access 325

block memory operations 250

block store 9, 292, 294 to 295

block store instructions 3, 19, 38

block transfer ASIs 231

block transfers 75
Sun Microelectronics
368

C Index
board-level interconnect testing and

diagnosis 329

boiundary scan register 336

boundary scan 329

boundary scan chain 334

boundary scan register 334 to 335

branch

mispredicted 14

predicted not taken 287

predicted taken 287

branch history 6

branch prediction 13, 267
likely not taken state 268

likely taken state 268

branch prediction logic 5

branch target alignment 262

branch transformation to reduce mispredicted

branches

illustrated 271

BST, see Number of Block Stores (BST) subfield of
UPA_CONFIG register

bus error 39, 182

during exit from RED_state 170

Bus Error (BERR) field of AFSR 181

bus errors 38

bus timeout error 182

bus turn-around 278

bus turn-around penalty

avoiding 278

bus turn-around time 278

BUSY bit 117

BUSY field of ASI_INTR_DISPATCH_STATUS

register 161, 164

BUSY, see BUSY field of ASI_INTR_DISPATCH_
STATUS register

bypass ASI 54, 146, 305

byte granularity 279

Byte Mask 110, 142

BYTE_WE_L signals 341

Bytemask field 142

BYTEWE_L pins 340

C
C Stage 276, 290, 292

C stage 269

cache

direct mapped 274

external 18

flushing 28

inclusion 28

level-1 27

level-2 27

set-associative 274

write-back 27

Cache Access (C) Stage 14
illustrated 11

cache coherence

state transitions 95
without Dtags 101

cache coherence (sequence with Dtags) 99

cache coherence model 98
using duplicate tags (Dtags) illustrated 99

cache coherence protocol 30, 74, 94
state diagram illustrated 95

transitions allowed 97
write-invalidate 98

cache coherency 8

cache coherent transactions 102
cache flush

software 29

cache line 6

dirty 362

invalidating 29

cache miss 290

impact 4
cache timing 292
cacheable accesses 18, 30, 291, 294

cacheable after non-cacheable accesses 258

cacheable domain 34

Cacheable in Physically Indexed Cache (CP) field

of TTE 43, 257

Cacheable in Physically Indexed Cache (PC) field

of TTE 248

Cacheable in Virtually Indexed Cache (CV) field

of TTE 43
cacheable store 295
Sun Microelectronics
369

UltraSPARC User’s Manual C
cacheable store misses

back-to-back 295

caching

TSB 45

CANRESTORE Register 240, 285

CANSAVE Register 240, 285

capacity misses 275

CAS instruction 35
CEEN, see Correctable Error Enabled (CEEN) field of

ASI_ESTATE_ERROR_EN_REG register
cexc, see Current Exception (cexc) field of FSR

register
class

0 126

Class 0 P_REQ transaction 92
Class 1 P_REQ transaction 92
CLE, see Current Little Endian (CLE) field of

PSTATE register
clean window 240, 357
clean_window trap 159, 240

CLEANWIN Register 240, 285

CLEANWIN register 240

CLEAR_SOFTINT Ancillary State Register

(ASR) 167

CLEAR_SOFTINT register 157, 167

CLKA pin 340

CLKA signal 342

CLKB pin 340

CLKB signal 342

Clock Mode (CLK_MODE) field of UPA_

CONFIG register 154
code space

dynamically modified 34

coherence 74, 357
cache 94

unit of 30

coherence domain 30, 113 to 115

coherence protocol 8

coherency 361

cache 30

I-Cache 18

coherency domain 94

coherency protocol

modified, own, exclusive, shared, invalid

(MOESI) 8

coherency transactions

in power-down mode 327

coherent P_REQ 92

Coherent P_REQ transaction

packet format illustrated 140

coherent read hit

timing 79

coherent read hit timing

illustrated 79

Coherent S_REQ transaction

packet format illustrated 140

coherent write hit timing

E to M state transition - illustrated 82

to M state line - illustrated 81

color

virtual 28

completion

out-of-order 3

concatenation of bit vectors

symbol 11

COND_CODE_REG Ancillary State Register

(ASR) 156
condition codes

generation 14
condition-code-setting

dedicated hardware 284

conflict-misses 275

consistency 357
consistency between code and data spaces 34

context 357, 359

Context field of TTE 41
Context ID (CT) field of SFSR register 59
context register 52

Context, see Context field of TTE
Context_ID, see Context_ID field of SFSR register
Control Transfer Instruction (CTI) 287

control transfer instruction (CTI) 287

conventions

textual 11

Copyback transaction 106, 116, 119 to 120, 141

CopybackGotoSstate transaction 141

CopybackInvalidate transaction 107, 141
Sun Microelectronics
370

D Index
copybacks

cache line 77, 357

CopybackToDiscard transaction 108, 141

Copy-Out Parity Error (CP) field of AFSR 181
Correctable ECC Error (CE) field of AFSR 181
correctable error 179

Correctable Error Enabled (CEEN) field of ASI_

ESTATE_ERROR_EN_REG register 180
correctable memory ECC error 182

correctable_ECC_error trap 180

corrected_ECC_error trap 159, 178

cost of mispredicted branch

illustrated 271

counter field of TICK register 239

counter, see counter field of TICK register
CP, see Cacheable in Physically Indexed Cache (CP)

field of TTE
CPI 358
CPI, see cycles per instruction (CPI)
cross call 253, 358
cross-block scheduling 4

CT, see Context ID (CT) field of SFSR register
CTI couple 265

CTI couples 270
Current Driver 86 to 88
current driver 84

Current Exception (cexc) field of FSR

register 243, 245, 247
Current Little Endian (CLE) field of PSTATE

register 58

current memory model 255

current window 358
Current Window Pointer 358

CV, see Cacheable in Virtually Indexed Cache (CV)
field of TTE

CWP Register 171, 236, 240

cycles per instruction (CPI) 4

D
D0, see Data 0 (D0) field of PIC register
D1, see Data 1 (D1) field of PIC register
Data 0 (D0) field of PIC register 320
Data 1 (D1) field of PIC register 320

data alignment 7, 273
data byte addresses within quadword

illustrated 76

Data Cache (D-Cache) 8, 14

hiding misses 8
illustrated 5

miss 8
data cache hit 14

data cache miss 14

data parity error 179

data parity syndrome 181

Data Translation Lookaside Buffer (dTLB) 5, 8,

17

illustrated 5

data watchpoint 305
physical address 49, 306

virtual address 49, 305

data_access_error exception 122

data_access_error trap 159, 176 to 180

data_access_exception trap 31, 34 to 36, 42, 44, 47 to

51, 54, 56, 58, 64, 146 to 147, 152, 159, 164 to

165, 226, 229, 231, 235, 239, 248, 252, 303,

310

data_access_MMU_miss trap 46, 48, 248

data_access_protection trap 44, 48 to 49

Data_Stall 292

DATA_STALL pin 339

DATA_STALL signal 342

Data_Stall signal 75, 124 to 125

rules for asserting 124
timing 124

DataTranslation Lookaside Buffer (dTLB) 170

DC, see D-Cache Enable (DC) field of LSU_Control_
Register

DC_SPARE signal 342

D-Cache 18, 39, 94, 170, 177, 274, 276 to 279, 293

to 294, 324

access statistics 323

arbitration 293, 295

array access 276

as write-through 77

bypassing 275

enable bit 18

flush 29

hit 291
Sun Microelectronics
371

UltraSPARC User’s Manual D
hit rate 274

hit timing 292
latency (pin-to-pin) 275

line 273 to 274

load hit 292 to 293

load miss 292

logical organization illustrated 272

miss 291, 324

miss load 293

misses 274 to 275, 279

organization 272
read hit 324

sub-block 273 to 274

tag access 276

D-Cache Data Access Address

illustrated 314

D-Cache Data Access Data

illustrated 314

D-Cache Enable (DC) field of LSU_Control_

Register 177, 307
D-Cache miss, E-Cache hit timing

illustrated 275

D-Cache Tag/Valid Access Address

illustrated 314

D-Cache Tag/Valid Access Data

illustrated 315

D-Cache timing 273
DCTI couple 283

dead cycle

for S_REPLY assertion 128

deadlock avoidance 162

Decode (D) Stage 13
illustrated 11

default byte order 145

deferred errors 33, 176 to 177

deferred traps 40, 175, 236

delay slot 287, 290

and instruction fetch 263
annulled 289

delayed control transfer instruction

delay slot 39

delayed control transfer instruction (DCTI) 287

delay slot of 288

delayed return mode 291 to 293

demap 358

Demap Context operation 67

dependency

load use 269

dependency checking 289

destination register 360

Diag, see Diagnostics (Diag) field of TTE
Diagnostic (Diag) field of TTE 43
diagnostic accesses

I-Cache 50

diagnostic ASI accesses 29

diagnostics control and data registers 303

Direct Pointer Register 63

direct-mapped cache 23, 274

dirty cache line 362

Dirty Lower (DL) field of FPRS register 244

Dirty Upper (DU) field of FPRS register 244

dirty victim 119

dirty victim read 130

dirty victimized block 104, 114

disabled MMU 248

dispatch 358
Dispatch Control Register 303

illustrated 304

DISPATCH_CONTROL_REG register 157, 303

Dispatch0 322

displacement flush 28 to 29, 177, 327

disrupting errors 178
disrupting traps 175

distributed arbitration protocol 85

divider 7

division algorithm 241
division_by_zero trap 159

DL, see Dirty Lower (DL) field of FPRS register
DM, see Enable D-MMU (DM) field of LSU_

Control_Register
DMA transfers 18

D-MMU 48, 50, 52

D-MMU Enable bit 54

D-MMU enable bit 19

D-MMU Primary Context register 52

DOE_L pin 340

DOE_L signal 341

domains
Sun Microelectronics
372

E Index
cacheable and noncacheable 33

DONE instruction 39, 252, 307

DSYN_WR_L pin 340

DSYN_WR_L signal 341

Dtags 98

Dtags (coherence sequence without them) 101

Dtags (coherence sequence) 99

DU, see Dirty Upper (DU) field of FPRS register
DVP (Dirty Victim Pending) bit 102 to 104, 128,

142

undefined for ReadToDiscard 104

DWE_L signal 79

dynamic branch prediction

state diagram illustrated 268, 313

Dynamic Set Prediction 309
dynamically modified code space 34

E
E Stage 290 to 294

stalls 291

E, see Side Effect (E) field of TTE
E-Cache 18 to 19, 29, 39, 73 to 74, 94, 106 to 108,

128, 170, 175 to 181, 185, 224, 266 to 267, 274

to 275, 277 to 279, 283, 292, 324

access statistics 323

arbitration 293, 295

back-to-back misses 293

bus arbitration 266

data part 73

diagnostics access 315
executing code from 266
flush 28

hit 283

inclusion 94
line 274

miss 293, 295

parity error 176

scheduling 275
SRAM 291, 294

tag part 73

update 257

E-Cache and UDB interaction 76

E-Cache client transactions

relarive priorities 77

E-Cache clients 77

E-Cache coherence states

defined 94

E-Cache coherency

system responsibility 94

E-Cache Data Access Address

illustrated 315

E-Cache Data Access Data

illustrated 316

E-Cache Data Parity Error (EDP) field of

AFSR 181
E-Cache Data RAM 77

E-Cache Data RAM

illustrated 10

E-Cache Error Enable Register 175, 178 to 179

E-Cache flush

in power-down mode 327

E-Cache Limit (ELIM) field of UPA_CONFIG

register 155
E-Cache SRAM Mode (E$) field of UPA_CONFIG

register(IxMain) 155

E-Cache Tag Access Address

illustrated 316

E-Cache tag parity error 175

E-Cache Tag Parity Error (ETP) field of AFSR 181
E-Cache tag parity errors 178

E-Cache Tag Parity Syndrome Error (ETS) field of

AFSR 181
E-Cache Tag RAM 77

E-Cache Tag RAM

illustrated 10

E-Cache tag/State Access Data

illustrated 317

E-Cache tags

nonuniform copy 98

parity error 119

ECACHE_22_MODE pin 340

ECAD pins 340

ECAD signals 79 to 81, 341

ECAT pins 340

ECAT signal 79

ECAT signals 341

ECC error 177 to 179, 182

ECC syndrome 184, 186

ECC_Valid field of UPA_PORT_ID register 153
Sun Microelectronics
373

UltraSPARC User’s Manual F
EDATA pins 338 to 339

EDATA signals 341, 343

edge handling instructions 219

edge mask encoding 220
little-endian 221

EDGE16 instruction 219

EDGE16L instruction 219

EDGE32 instruction 219

EDGE32L instruction 219

EDGE8 instruction 219

EDGE8L instruction 219

EDPAR pins 338 to 339

EDPAR signals 341, 343

Enable D-MMU (DM) field of LSU_Control_

Register 19, 307
Enable Floating-Point (PEF) field of PSTATE

register 198, 304

Enable I-MMU (IM) field of LSU_Control_

Register 307
endianness 42

Energy Star compliance 327

enhanced security environment 240

EPD pin 338, 341

EPD signal 342

Error Correcting Code (ECC)

generated and checked by UDB 76

Error Correcting Code (ECC) byte addresses

within quadword

illustrated 76

Error Correction Code (ECC) 75

generation and checking 10
error correction code (ECC) 18

error_state 169, 236

error_state processor state 171
ESTATE_ERR_EN Register 170

ESTATE_ERR_EN register 252

Exclusive (E) state 80 to 82

Execute (E) Stage 14

illustrated 11

Execution (E) Stage 14
EXPAND instruction 206

EXT_EVENT signal 342 to 343

extended (non-SPARC-V9) ASIs 147

extended floating-point pipeline 11

extended instructions 3, 253

Extended Interrupt Target ID 117
external cache 4, 18

External Cache (E-Cache) 8, 14

External Cache Unit (ECU) 8
illustrated 5

external power-down (EPD) signal 196, 328

External Reset pin 169

Externally Initiated Reset (XIR) 169, 171, 239

externally_initiated_reset trap 158

F
FALIGNDATA instruction 214, 228

false errors 176

FAND instruction 215

FANDNOT1 instruction 215

FANDNOT1S instruction 215

FANDNOT2 instruction 215

FANDNOT2S instruction 215

FANDS instruction 215

fast_data_access_MMU_miss trap 47 to 48, 60, 159

fast_data_access_protection trap 47 to 48, 63, 159,

252

fast_instruction_access_MMU_miss trap 47 to 48, 60,

159, 252

fatal errors 175
Fatal Errors (P_FERR) 119, 130

Fault Address field of SFAR 61
Fault Type (FT) field of SFSR register 31, 34 to 36,

58, 248, 303, 310

Fault Type (ft) field of SFSR register 49

Fault Valid (FV) field of SFSR register 60
Fault_Address, see Fault_Address field of SFAR

register
fcc, see Floating-Point Condition Code (fcc) field of

FSR register
fcc0, see Floating-Point Condition Code 0 (fcc0) field

of FSR register
fcc1, see Floating-Point Condition Code 1 (fcc1) field

of FSR register
fcc2, see Floating-Point Condition Code 2 (fcc2) field

of FSR register
Sun Microelectronics
374

F Index
fcc3, see Floating-Point Condition Code 3 (fcc3) field
of FSR register

fccN 358
FCMPEQ instruction 218

FCMPEQ16 instruction 217

FCMPEQ32 instruction 217

FCMPGT instruction 218

FCMPGT16 instruction 217

FCMPGT32 instruction 217

FCMPLE instruction 218

FCMPLE16 instruction 217

FCMPLE32 instruction 217

FCMPNE instruction 218

FCMPNE16 instruction 217

FCMPNE32 instruction 217

FEF, see FPU Enabled (FEF) field of FPRS register
Fetch (F) Stage 13

illustrated 11

FEXPAND instruction 200

FEXPAND operation

illustrated 206

fill_n_normal trap 159

fill_n_other trap 159

floating-point and graphics instruction

classes 295

floating-point and graphics instructions

latencies 299
Floating-Point and Graphics Unit (FGU) 13 to 15

floating-point condition code 358

Floating-Point Condition Code (fcc) field of FSR

register in SPARC-V8 245

Floating-Point Condition Code 0 (fcc0) field of

FSR register 245
Floating-Point Condition Code 1 (fcc1) field of

FSR register 245
Floating-Point Condition Code 2 (fcc2) field of

FSR register 245
Floating-Point Condition Code 3 (fcc3) field of

FSR register 245
floating-point condition codes 296

floating-point deferred trap queue (FQ) 247

floating-point exception 358
floating-point exception handling 243

floating-point IEEE-754 exception 358
floating-point multiplier 297

floating-point pipeline 7, 11

floating-point queue 11

floating-point register file 14 to 15, 19

Floating-Point Registers State (FPRS)

Register 244

floating-point square root 243

floating-point store 295

floating-point trap type 358
Floating-Point Trap Type (ftt) field of FSR

register 246, 358

Floating-Point Unit (FPU) 7
illustrated 5

flush

D-Cache 29

displacement 28

FLUSH instruction 32, 34, 39, 247, 307

FM, see Force Parity Error Mask (FM) field of LSU_
Control_Register

FMUL16x16 instruction 208

FMUL8SUx16 operation

illustrated 211

FMUL8ULx16 operation

illustrated 212

FMUL8x16 instruction 208

FMUL8x16 operation

illustrated 209

FMUL8x16AL instruction 208

FMUL8x16AL operation

illustrated 210

FMUL8x16AU instruction 208

FMUL8x16AU operation

illustrated 210

FMULD16x16 instruction 208

FMULD8SUx16 operation

illustrated 212

FMULD8ULx16 operation

illustrated 213

FNAND instruction 215

FNANDS instruction 215

FNOR instruction 215

FNORS instruction 215

FNOT1 instruction 215
Sun Microelectronics
375

UltraSPARC User’s Manual G
FNOT1S instruction 215

FNOT2 instruction 215

FNOT2S instruction 215

FONE instruction 215

FONES instruction 215

fonts

textual conventions 11

FOR instruction 215

Force Parity Error Mask (FM) field of LSU_

Control_Register 307
formation of TSB pointers

illustrated 70

FORNOT1 instruction 215

FORNOT1S instruction 215

FORNOT2 instruction 215

FORNOT2S instruction 215

FORS instruction 215

fp_disabled trap 157, 159, 198, 200 to 201, 208, 215,

217 to 218, 222, 226, 228 to 229, 231, 304

fp_disabled_ieee_754 trap 159

fp_exception_ieee_754 trap 242, 246

fp_exception_other trap 159, 235, 242, 244, 246

FP_STATUS_REG Ancillary State Register

(ASR) 156
FPACK16 instruction 200 to 201

FPACK16 operation

illustrated 202

FPACK32 instruction 200, 203

FPACK32 operation

illustrated 204

FPACKFIX instruction 197, 200, 204

FPACKFIX operation

illustrated 205

FPADD16 instruction 199

FPADD16S instruction 199 to 200

FPADD32 instruction 199

FPADD32S instruction 199 to 200

FPMERGE instruction 200

FPMERGE operation

illustrated 207

FPRS Register 285

FPSUB16 instruction 199

FPSUB16S instruction 199 to 200

FPSUB32 instruction 199

FPSUB32S instruction 199 to 200

FPU Enabled (FEF) field of FPRS register 198,

304

FQ, see floating-point deferred trap queue (FQ) 247

frame buffer 278

FSRC1 instruction 215

FSRC1S instruction 215

FSRC2 instruction 215

FSRC2S instruction 215

ft, see Fault Type (FT) field of SFSR register
ftt, see Floating-Point Trap Type (ftt) field of FSR

register
functional units 3

FV, see Fault Valid (FV) field of SFSR register
FXNOR instruction 215

FXNORS instruction 215

FXOR instruction 215

FXORS instruction 215

FZERO instruction 215

FZEROS instruction 215

G
G Stage 290, 292, 294, 297

stall 298

stall counts 322
G, see Global (G) field of TTE
Global (G) field of TTE 41, 44
global registers 7

alternate 7

interrupt 7

MMU 7

normal 7

global visibility 33

global visibility of memory accesses 31
granularity

byte 279
sub_block 279

GRAPHIC_STATUS_REG register 157

graphics data format

8-bit 196
fixed (16-bit) 197

graphics data formats 196
Sun Microelectronics
376

I Index
graphics instructions 293

Graphics Status Register (GSR) 197, 304

Graphics Unit (GRU) 7
illustrated 5

Group (G) Stage

illustrated 11

group break 287

Grouping (G) Stage 13
grouping rules

general 282

H
hardware errors

fatal 40

hardware interrupts 253

hardware table walking 47

hardware_error floating-point trap type 246, 358

hiding cache misses 8
high-water mark

for stores 278

I
I/0 devices 278

I/O access 38
I/O accesses 33

I/O control registers 30

I/O memory 256

IC, see I-Cache Enable (IC) field of LSU_Control_
Register

I-Cache 17, 94, 170, 177, 266, 277, 306, 309

access statistics 323

disabled in RED_state 169

flush 28

miss 283, 324

miss latency 267

miss processing 313

utilization 270
I-Cache coherency 18

I-Cache diagnostic accesses 50

I-Cache Enable (IC) field of LSU_Control_

Register 177, 306
I-Cache hit 17

I-Cache Instruction Access Address 310

illustrated 310

I-Cache Instruction Access Data 310

illustrated 310

I-Cache miss processing 265

I-Cache organization 262
illustrated 262, 309

I-Cache Predecode Field Access Address 311

illustrated 311

I-Cache Predecode Field Access Data 311

I-Cache Predecode Field LDDA Access Data

illustrated 311

I-Cache Predecode Field STXA Access Data

illustrated 311

I-Cache Tag/Valid Access Address

illustrated 310

I-Cache Tag/Valid Access Data

illustrated 311

I-Cache Tag/Valid Field Access Address 310

I-Cache Tag/Valid Field Access Data 311

I-Cache timing 265
ICRF, see Integer Core Register File (ICRF)
ID, see Modeul Identification (ID) field of UPA_

PORT_ID register
IE, see Interrupt Enable (IE) field of PSTATE register
IEEE Std 1149.1-1990 329
IEEE Std 754-1985 245

IEEE_754_exception floating-point trap

type 246, 358

IEU0 pipeline 284

IEU1 pipeline 284

IG, see Interrupt Global (IG) field of PSTATE register
illegal address aliasing 28

illegal_instruction trap 156 to 157, 159, 167, 226, 231,

235, 238, 247 to 249, 253

ILLTRAP instructions 235

IM, see Enable I-MMU (IM) field of LSU_Control_
Register

image compression algorithms 3

image processing 3

two-demensional 7

two-dimensional 7

I-MMU 52

disabled in RED_state 169

I-MMU disabled 38
Sun Microelectronics
377

UltraSPARC User’s Manual I
I-MMU Enable bit 54

IMPDEP1 instruction 199

impl field of VER register 241
impl, see Implementation (impl) field of VER register
implementation dependency 10
implementation-dependent 358
inclusion 28

Incoming Interrupt Vector Data registers 116

Incoming System Address Parity Error (ISAP)

field of AFSR 181
Incoming UPA Transaction Error Enable

(ISAPEN) field of ASI_ESTATE_ERROR_

EN_REG register 180
initialization requirements 170

instruction alignment for grouping logic 263
instruction breakpoint 305

Instruction Buffer 6, 13

illustrated 5

instruction buffer 265, 267, 273, 282 to 283, 285,

288

Instruction Cache (I-Cache) 13

illustrated 5

Instruction Cache (I-Cache) 6
miss 8

instruction dispatch 283, 304

instruction grouping

anti-dependency constraints 282

input dependency constraints 282

output dependency constraints 282

read-after-write dependency

constraints 282

write-after-read dependency

constraints 282

write-after-write dependency

constraints 282

instruction prefetch 34

to side-effect locations 38

when exiting RED_state 39

instruction pre-fetch buffers 34

instruction set architecture 358
instruction termination 15
Instruction Translation Lookaside Buffer

(iTLB) 5, 8, 170

illustrated 5

instruction Translation Lookaside Buffer

(iTLB) 17

Instruction Translation Lookaside Buffer (iTLB)

misses 267
instruction_access_error exception 122

instruction_access_error trap 39, 158, 170, 176, 178

to 180, 252

instruction_access_exception trap 44, 47 to 48, 54,

58, 158, 238 to 239

instruction_access_MMU_miss trap 46, 48, 58, 60

instructions

block load 3

block store 3

instructions per cycle (IPC) 3
INT_DIS, see Interrupt Disable (INT_DIS) field of

TICK_CMPR register
Integer Core Register File (ICRF) 13
integer divider 7

integer division 241

Integer Executioin Unit (IEU) 284

pipelines 284

Integer Execution Unit (IEU) 7
illustrated 5

integer multiplication 241

integer multiplier 7

integer pipeline 7, 11

integer register file 15, 240, 284

interconnect master 102

UltraSPARC-I 74
interconnect packet formats 138
interconnect packet types

illustrated 139

interconnect slave

UltraSPARC-I 75
interconnect transaction 93

class bit 141

interconnect transaction type

encodings 141
interconnect transactions 92
interconnect_ECC_Valid signal 123

interconnection topology 84

interleaved D-Cache hits and misses to same sub-

block 277
interlocks 13
Sun Microelectronics
378

L Index
internal ASI 39, 146, 177, 291, 294

store to 39

internal ASIs 39
internal cache coherency

UltraSPARC-I responsibility 94

interprocessor call 358

Interrupt (P_INT_REQ) 116

Interrupt Disable (INT_DIS) field of TICK

register 250
Interrupt Disable (INT_DIS) field of TICK_CMPR

register 166

interrupt dispatch

pseudo-code 162
Interrupt Enable (IE) field of PSTATE

register 116, 250

Interrupt Global registers 252

interrupt global registers 163, 251

Interrupt Global Registers (IGR) 163

Interrupt Globals (IG) field of PSTATE

register 163, 251 to 252

interrupt packet 253

interrupt packets 76

interrupt receive

pseudo-code 163
interrupt receiver

UltraSPARC-I as 75

Interrupt Request Register 122

Interrupt Target ID 116

Interrupt transaction 141

Interrupt Vector 78

interrupt vector 161, 328

interrupt vector dispatch 161

Interrupt Vector Dispatch Register 117, 122, 161

interrupt vector dispatch register 164
interrupt vector dispatch status register 164
interrupt vector receive 162

Interrupt Vector Receive Register 117

interrupt vector receive register 165
interrupt vector transmission 180

Interrupt Vector Uncorrectable Error (IVUE) field

of AFSR 181
interrupt vectors

in power-down mode 327

INTERRUPT_GLOBAL_REG register 158

interrupt_level_n trap 159

interrupt_vector trap 116, 159, 162 to 163, 252

interrupter

UltraSPARC-I as 75

invalid_fp_register floating-point trap type 246,

358

Invalidate transaction 106, 141

invalidating a cache line 29

Invert Endianness (E) field of TTE 42
Invert Endianness (IE) bit 146

ISA 358
ISAPEN, see Incoming System Error Enabled

(ISAPEN) field of ASI_ESTATE_ERROR_
EN_REG register

Issue Barrier (MEMBAR #Sync) 33

I-Tag Access Register 48

iTLB miss handler 42

IVA (indicate advisory) bit 101

IVA (Invalidate Advisory) bit 143

IVA (invalidate advisory) bit 105

IVA bit 143

J
JMPL

to noncacheable target address 39

K
kernel code 166

L
L, see Lock (L) field of TTE
L5CLK signal 342

Last Port Driver 86 to 87, 89

latency

System Interconnect 293

LDD instruction 249

LDDA instruction 227, 231

LDDF_mem_address_not_aligned trap 159, 249

LDQF instruction 249

LDQFA instruction 249

LDSTUB instruction 35
LDUW instruction
Sun Microelectronics
379

UltraSPARC User’s Manual M
replaces SPARC-V8 LD 273

leaf subroutine 272

level-1 cache 17

flushing 27

level-1 instruction cache 309

level-2 cache 18, 27

little-endian 219

little-endian ASIs 228

little-endian byte order 145, 226

livelock condition

avoiding 93

load

outstanding 294
Load / Store Unit (LSU) 8

address generation adder 6

illustrated 5

Load Buffer 8, 14 to 15

illustrated 5

load buffer 4, 32, 39, 275 to 278, 290, 292, 294, 323

to 324

depth 275

required depth 276
load buffer timing 275
load data

returned in order 292

Load Data Parity Error (LDP) field of AFSR 181
load hit bypassing load miss

not support on UltraSPARC-I 277

load latencies 277

Load Store Unit (LSU) 49

load use

stall counts 322
load use stall 297

loads

always execute in order 276

loads to the same D-Cache sub-block 277
load-use dependency 269

Lock (L) field of TTE 43
loop unrolling 272

LOOP_CAP pin 340

Loopback (not allowed) 116

LOOPCAP signal 342

LSU_Control_Register 17 to 19, 54, 169, 177, 305

to 306

illustrated 306

M
M Class instructions 296
machine state after reset 171

machine state in RED_state 171

mandatory SPARC-V9 ASRs 156

manuf field of VER register 241
manuf, see Manufacturer (manuf) field of VER

register
mask field of VER register 241
mask, see Mask Identifier (mask) field of VER

register
master

UltraSPARC-I as 74

Master Interface (valid S_REPLY types) 130

master UltraSPARC-I 84

MAXTL 171, 236

maxtl field of VER register 242
maxtl, see Maximum Trap Level (maxtl) field of VER

register
maxwin field of VER register 242
maxwin, see Maximum CWP (maxwin) field of VER

register
may 359
MCAP pin 340

mem_address_not_aligned trap 47, 49, 56, 58, 154,

159, 226, 228 to 229, 231, 238, 273, 303

MEMBAR #LoadLoad 32, 256 to 257

MEMBAR #LoadStore 32, 232 to 233, 294 to

295

MEMBAR #Lookaside 30, 33, 256 to 258

MEMBAR #Lookaside vs MEMBAR

#StoreLoad 30

MEMBAR #MemIssue 32 to 33, 257 to 258, 293

to 295

MEMBAR #StoreLoad 30, 32, 40, 112, 232 to

233, 257, 293 to 294

MEMBAR #StoreStore 33, 233, 248, 294 to

295

and STBAR 33
MEMBAR #Sync 29, 32 to 33, 39, 56, 58, 67, 146,

161, 163, 176 to 177, 179, 232, 294 to 295
Sun Microelectronics
380

M Index
MEMBAR examples

and memory ordering 31

MEMBAR instruction 31 to 32, 38, 258

memory access instructions 225

memory accesses

global visibility 31
memory ECC error 182

Memory Interface Unit (MIU) 10
illustrated 5

Memory Management Unit (MMU) 8, 14, 21, 41,

359
illustrated 5

software view 24

memory model 233

Memory Model (MM) field of PSTATE

register 255

memory models 255

memory ordering 30 to 31

memory synchronization 32
memory-mapped I/O control registers 30

MG, see MMU Globals (MG) field of PSTATE
register

MID, see Module ID (MID) field of UPA_CONFIG
register

minimizing arbitration latency in a uniprocessor

system 87

minimum alias boundary 28

minimum arbitration latencies 89

MISC_BIDIR signals 342

mispredicted branch 14

mispredicted control transfer 288

miss handler

iTLB 42

Translation Lookaside Buffer (TLB) 29

miss strategy

TLB 8

missing TLB entry 45

MM, see Memory Model (MM) field of PSTATE
register

MMU 359
disabled 248

MMU behavior during RED_state 54

MMU behavior during reset 54

MMU bypass mode 68, 145

MMU demap 66
MMU demap context operation 66, 68

MMU demap operation format

illustrated 66

MMU demap page operation 66, 68

MMU dTLB Tag Access Register

illustrated 63

MMU D-TSB Register

illustrated 61

MMU Global Registers 252

MMU global registers 47, 251

MMU Globals (MG) field of PSTATE register 251

to 252

MMU iTLB Tag Access Register

illustrated 63

MMU I-TSB Register

illustrated 61

MMU page sizes 21

MMU requirements

compliance with SPARC-V9 55

MMU Synchronous Fault Address Register

(SFAR)

illustrated 61

MMU_GLOBAL_REG register 158

MMU-generated traps 47

Modified (M) state 80 to 82

modified, own, exclusive, shared, invalid

(MOESI) coherency protocol 8

module 359
Module Capabilities (MCAP) field of UPA_

CONFIG register 154
Module ID (ID) field of UPA_PORT_ID

register 153
Module ID (MID) field of UPA_CONFIG

register 156
MOESI coherence protocol 8
MOESI states 94

MS, see Multi-Scalar (MS) field of DISPATCH_
CONTROL_REG register

MUL8SUx16 instruction 211

MUL8ULx16 instruction 211

MUL8x16 instruction 209

MUL8x16AL instruction 210

MUL8x16AU instruction 209
Sun Microelectronics
381

UltraSPARC User’s Manual N
MULD8SUx16 instruction 212

MULD8ULx16 instruction 213

multicycle instructions 289

Multiflow TRACE and Cydrome Cydra-5 280

multiple bit ECC error 176

Multiple Error (ME) field of AFSR 181
multiple outstanding transactions 126
multiple-error field (ME) of AFSR 180

multiplication algorithm 241
multiplier 7

multi-processor system 358

Multi-Scalar (MS) field of DISPATCH_

CONTROL_REG register 304
Multi-Scalar Dispatch Control 304

MVR_BUSY 117

M-way set-associative TSB 45

N
N>2 Stage

stall 298

N1 Stage 14, 276, 292

illustrated 11

N2 Stage 15, 290, 294

illustrated 11

N3 Stage 15, 270, 294

illustrated 11

NACK bit 117

NACK field of ASI_INTR_DISPATCH_STATUS

register 161, 164

NACK, see NACK field of ASI_INTR_DISPATCH_
STATUS register

NCEEN bit of ESTATE_ERR_EN register 39

NCEEN, see Noncorrectable Error Enable (NCEEN)
field of ESTATE_ERR_EN register

NCST, see Number of Noncacheable Stores (NCST)
subfield of UPA_CONFIG register

NDP (no Dtag present) bit 101

NDP (No Duplicate Tag) bit 142

nested traps

in SPARC-V9 236

not supported in SPARC-V8 236

next field aliasing between branches

illustrated 264

next program counter 359
NFO bit in MMU 36

NFO page attribute bit 280

NFO, see No-Fault Only (NFO) field of TTE
No Dual Tag Present (NDP) option 93

no dual-tag present (NDP) bit 106 to 108

NO_FAULT ASI 36

Node_RQ 88

NODE_RQ pins 339

Node_RQ signal 85

NODE_RQ signals 342

NODEX_RQ pin 339

NODEX_RQ signal 342

Nodex_RQ signal 85

No-Fault Only (NFO) field of TTE 42, 51

Non cached transactions 109

non-allocating cache 272

non-blocking loads 275
noncacheable 18

non-cacheable accesses 30

noncacheable accesses 18, 32, 291, 294

noncacheable instruction prefetch 39

noncacheable operations

to I/O space 127

noncacheable store 295

outstanding 295

noncacheable stores 278, 295

noncached block reads 76

noncached block writes 76

Noncached P_REQ transaction

packet format illustrated 140

NonCachedBlockRead transaction 110, 141

NonCachedBlockWrite transaction 111, 141

NonCachedRead transaction 109, 141

NonCachedWrite transaction 110, 141

Noncorrectable Error Enable (NCEEN) field of

ASI_ESTATE_ERROR_EN_REG

register 180
Noncorrectable Error Enable (NCEEN) field of

ESTATE_ERR_EN register 170, 252

non-faulting ASIs

and atomic accesses 35

non-faulting load 35, 48
Sun Microelectronics
382

P Index
and TLB miss 36

Non-faulting loads 248

non-faulting loads 36, 280
non-privileged 359
non-privileged mode 359
Non-privileged Trap (NPT) field of TICK

register 239

nonrestricted ASI 146

non-restricted ASIs 146

Non-Standard (NS) field of FSR register 242 to

243, 246
nontranslating ASI 305

nontranslating ASIs 146

normal ASI 146

normal memory 359

notational conventions

angle brackets ’< >’ 11

concatenation symbol 11

curly braces ’{ }’ 11

square brackets ’[]’ 11

nPC 359
nPC Register 239

NPT, see Non-Privileged Trap (NPT) field of TICK
register

NS, see Non-Standard (NS) field of FRS register
Nucleus code 166

nucleus context 229

Nucleus Context Register 57

Number of Block Stores (BST) field of UPA_

CONFIG register 155
Number of Class 0 Transactions (SCIQ0) field of

UPA_CONFIG register 155
Number of Class 1 Transactions (SCIQ1) field of

UPA_CONFIG register 155
Number of Incoming P_REQs (PREQ_RQ) field

of UPA_PORT_ID register 153
Number of Incoming Processor Interrupts

(PINT_RDQ) field of UPA_PORT_ID

register 153
Number of Incoming Slave Data Writes (PREQ_

DQ) field of UPA_PORT_ID register 153
Number of Noncacheable Stores (NCST) field of

UPA_CONFIG register 155

Number of Slave Reads (ONEREAD) field of

UPA_PORT_ID register 153
Number of Writebacks (WB) field of UPA_

CONFIG register 155
NWINDOWS 240, 242, 359

O
odd fetch to an I-Cache line

illustrated 264

ONEREAD, see One Outstanding Slave Read
(ONEREAD) field of UPA_PORT_ID register

optional 359
ordering

between cacheable accesses after

noncacheable accesses 33

OTHERWIN Register 240, 285

out of range virtual addresses 22

Outgoing Interrupt Vector Data Register 161

out-of-order completion 3

out-of-range violation 67

out-of-range violations 61, 63

out-of-range virtual address 238
as target of JMPL or RETURN 238

out-of-range virtual addresses

during STXA 56

outstanding loads 294
outstanding store 294
overflow exception 243

Overwrite (OW) field of SFSR register 59
overwrite policy

AFSR non-sticky bit 185

OW, see Overwrite (OW) field of SFSR register
Owned (O) state 82

P
P _REQ transaction 92

P, see Privileged (P) field of TTE
P_FERR 118 to 119, 175 to 176

P_IAK 117 to 119
P_IDLE 118 to 119
P_INT_REQ 116 to 120, 122, 127, 141, 153

P_INT_REQ transaction

packet format illustrated 140
Sun Microelectronics
383

UltraSPARC User’s Manual P
P_NCBRD_REQ 110, 118, 122, 126, 141

P_NCBWR_REQ 111, 122, 127, 141

P_NCRD_REQ 109, 118 to 120, 122, 126 to 127,

141 to 142

P_NCWR_REQ 110, 120, 122, 127, 141 to 142, 257

P_RAS 118 to 119
P_RASB 153

P_RD*_REQ 111, 122, 126, 128, 144

P_RDD_REQ 96, 104, 108, 122, 134, 141

P_RDO_REQ 96 to 97, 101, 103, 105 to 107, 120,

122, 133 to 134, 137 to 138, 141

P_RDS_REQ 97, 102, 106, 122, 131 to 132, 135, 137

to 138, 141

P_RDSA_REQ 97, 102, 106, 122, 131, 141, 144

P_REPLY 100 to 101, 111, 117 to 118, 120, 123, 143,

175

class bit 118

definitions 119
encoding 118

MID of requesting UltraSPARC 118

packet format illustrated 118 to 119

timing 123
type 118

P_REPLY (definitions) 119

P_REPLY acknowledgment 92

P_REPLY pins 339

P_REPLY signals 342

P_REPLY transaction 93

P_REQ 116, 119, 142, 153

P_REQ transactioin

interrupt vector access 92

P_REQ transaction 92 to 93

classes 92
noncacheable 92

P_REQ transactions

coherent request for cacheable memory

access 92

P_RERR 118 to 119
P_RTO 120

P_SACK 97, 101, 103, 106 to 109, 115, 118 to 119,

122, 132 to 134, 142

P_SACKD 97, 101, 103, 106 to 109, 115, 118 to 120,

122, 137 to 138

P_SNACK 101, 106 to 109, 111 to 112, 115, 118 to

119

P_SNACK transaction 93

P_WRB_REQ 95 to 97, 101, 104, 113, 115, 120, 122,

128, 135, 138, 141

P_WRI_REQ 95 to 96, 101, 105 to 106, 122, 127,

141 to 144

PA Data Watchpoint Register 49

illustrated 306

PA Watchpoint Address Register 56

PA, see Physical Page Number (PA) field of TTE
PA_watchpoint trap 159, 226, 228 to 229, 231, 305

pack instructions 197 to 198, 201

packet formats

interconnect 138
packets

interrupt 76

page number

physical 21

virtual 21

page offset 21

page size

encoding in Translation Table Entry

(TTE) 42

Page Size (Size) field of TTE 42
parity 143

parity bit 143

parity error 40, 175, 178

E-Cache tags 119
on SYSADDR bus 119

Parity Syndrome Error (P_SYND) field of

AFSR 181
partial store ASI 225

partial store instructions 225, 251

to noncacheable addresses 257

Partial Store Order (PSO) memory model 255,

257

partial stores

to noncacheable locations only 92

partitioned add 7

partitioned multiply 7

partitioned multiply instructions 208

PC 360
PC Ancillary State Register (ASR) 156
PCAP, see Processor Capabilities (PCAP) field of

UPA_CONFIG register
Sun Microelectronics
384

P Index
PCON, see Processor Configuration (PCON) field of
UPA_CONFIG register

PContext field 57

PCR Cycle_cnt function 321

PCR DC_hit function 323

PCR DC_ref function 323

PCR Dispatch0_dyn_use function 323

PCR Dispatch0_ICmiss function 322

PCR Dispatch0_mispred function 322

PCR Dispatch0_static_use function 322

PCR EC_hit function 324

PCR EC_ref function 324

PCR EC_snoop_inv function 324

PCR EC_snoop_wb function 324

PCR EC_wb function 324

PCR EC_write_hit_clean function 324

PCR IC_hit function 323

PCR IC_ref function 323

PCR Instr_cnt function 321

PCR/PIC operational flow

illustrated 321

PDIST instruction 221

PEF, see Enable Floating-Point (PEF) field of
PSTATE register

PERF_CONTROL_REG ASR 157

PERF_COUNTER register 157

performance

instrumentation 319
Performance Control Register (PCR) 319

illustrated 320

performance counters

for monitoring I-Cache accesses and

misses 266

Performance Instrumentation Counter (PIC) 319

Performance Instrumentation Counters (PIC)

illustrated 320

PHASE_DET_CLK pin 340

physical address 21, 357, 359, 362

Physical Address (PA) field of TTE 43
physical address data watchpoint 306

Physical Address Data Watchpoint Read Enable

(PR) field of LSU_Control_Register 308

Physical Address Data Watchpoint Write Enable

(PW) field of LSU_Control_Register 308
physical address space

accessing 145
size 3

physical memory 362

physical page attribute bits

MMU bypass mode 68
physical page number 21

physical tags 77

physical-indexed, physical-tagged (PIPT)

cache 18

physically indexed cache 6

physically indexed, physically tagged (PIPT) 17

Physically Indexed, Physically Tagged (PIPT)

cache 94

physically noncacheable accesses 19

PIL, see Processor Interrupt Level (PIL) field of
PSTATE register

PINT_RDQ, see Number of Incoming Interrupt
Requests (PINT_RDQ) field of UPA_
CONFIG register

PINT_RDQ, see Number of Incoming Interrupt
Requests (PINT_RDQ) field of UPA_PORT_
ID register

PINT_RQ transaction 153

pipeline 3 to 4

9-stage 11
extended floating-point 11

floating-point 7, 11

integer 7, 11

stall 39

stalls 13

pipeline flushing 18

pipeline stages

illustrated 11

pipeline stages (detailed)

illustrated 12

pipelined loads to E-Cache

illustrated 276

pipelines

decoupling 40

pixel compare instructions 217

pixel data

operations on 3
Sun Microelectronics
385

UltraSPARC User’s Manual P
pixel distance 7

pixel orderings 197

PLL_BYPASSS signal 343

PLLBYPASS signal 342

PM, see Physical Address Data Watchpoint Mask
(PM) field of LSU_Control_Register

PMERGE instruction 206

point-to-point write-invalidate protocol 94

population count (POPC) instruction 240

port_ID field 141

port_ID signal 85 to 86

port_id signal 86

power on

clearing AFSR to avoid false errors 176

power_on_reset trap 158

power-down mode 196, 253, 327

restart 328

Power-On Reset (POR) 145, 170

Power-on Reset (POR) 175

Power-On Reset (POR) pin 328

Power-On-Reset (POR) 239

Power-on-Reset (POR) 119

PR, see Physical Address Data Watchpoint Read
Enable (PR) field of LSU_Control_Register

precise exception model 7

precise traps 40, 236

Prefech and Dispatch Unit (PDU) 14

Prefetch and Dispatch Unit (PDU) 6, 13

illustrated 5

prefetch unit 4

PREFETCHA instruction 248

prefetchable 359
PREQ_DQ, see Number of Entries in P_REQ Data

Read Queue (PREQ_DQ) field of UPA_
CONFIG register

PREQ_DQ, see Number of Entries in P_REQ Data
Read Queue (PREQ_DQ) field of UPA_
PORT_ID register

PREQ_DQ, see Number of Entries in P_REQ Data
Write Queue (PREQ_DQ) field of UPA_
CONFIG register

PREQ_DQ, see Number of Entries in P_REQ Data
Write Queue (PREQ_DQ) field of UPA_
PORT_ID register

Primary Context Register 57

PRIV, see Privileged (PRIV) field of PCR register
Privilege (PRIV) field of AFSR 177

privilege (PRIV) field of PSTATE register 180

privilege violation 60

privileged 47, 360
Privileged (P) field of TTE 44
Privileged (PR) field of SFSR register 59
Privileged (PRIV) field of PCR register 157, 319

to 320
Privileged (PRIV) field of PSTATE register 34, 44,

48 to 49, 256, 359 to 360, 362

Privileged Access (PRIV) field of AFSR 181
privileged mode 360
privileged_action trap 34, 47, 49, 51, 156 to 157, 159,

164 to 166, 239, 256, 319

privileged_opcode trap 157, 159, 166 to 167, 196,

249, 304, 319

privilege-error field (PRIV) of AFSR 180

Processor Capabilities (PCAP) field of UPA_

CONFIG register 156
Processor Configuration (PCON) field of UPA_

CONFIG register 155
processor front end components 261
processor interrupt level (PIL) 167

Processor Interrupt Level (PIL) field of PSTATE

register 250

processor interrupt level (PIL) field of PSTATE

register 167

processor memory model 233

processor-to-UPA frequency ratio 292

program counter 360
program order 32

protection violation 49

protocol

cache coherence 94
PSO 295

mode 30, 32

PSO memory model 249

PSTATE 232

PSTATE global register selection encodings 252

PSTATE Register 251, 253, 285

PW, see Physical Address Data Watchpoint Write
Enable (PW) field of LSU_Control_Register
Sun Microelectronics
386

R Index
Q
qne, see Queue Not Empty (qne) field of FSR register
quad-precision floating-point instructions 244

quadword ordering 76

queue

floating-point 11

Queue Not Empty (qne) field of FSR register 247

R
RAM_TEST signal 342

rd 360
RD, see Rounding Direction (RD) field of FSR

register
Read-After-Write

interaction with store buffer 293

Read-After-Write (RAW) hazard 279

read-modify-write request

not supported by P_REQ transactions 92

ReadToDiscard Any Block transaction 134

ReadToDiscard transaction 104, 141

ReadToOwn Block transaction 133 to 134

ReadToOwn transaction 103, 141

ReadToOwn Victimized Dirty Block

transaction 137 to 138

ReadToShare Block transaction 131 to 132

ReadToShare transaction 102 to 103, 136, 141

ReadToShare Victimized Dirty Block

transaction 136

ReadToShareAlways Block transaction 131

ReadToShareAlways transaction 102 to 103

ReadtoShareAlways transaction 141

real memory 256

recoverable ECC error 178

RED, see Reset, Error, and Debug (RED) field of
PSTATE register

RED_state 17, 19, 39, 54 to 55, 169 to 171, 177, 236,

252, 328, 360
default memory model 255

exiting 39, 170, 252

MMU behavior 54

RED_state_exception trap 158

Reference MMU 24

Specification 21

Register (R) Stage 14

register file

annex 14

floating-point 14 to 15, 19

integer 15

Register Stage

illustrated 11

register window 7

Relaxed Memory Order (RMO) 280

Relaxed Memory Order (RMO) memory

model 255, 258

requirements

initialization 170

reserved 360
reserved fields in opcodes 235

reserved instructions 235

reset 169
reset priorities 169

RESET signal 343

reset trap 360
Reset, Error, and Debug (RED) field of PSTATE

register 39, 169 to 170, 174, 252, 360

RESET_L pin 338, 341

RESET_L signal 342

Reset_L signal 86

restricted 360
restricted ASI 51, 146

restricted ASIs 146, 256

RETRY instruction 39, 252, 307

Return Address Stack (RAS) 272
after Power-On Reset 170

in RED_state 170

RISC architecture 3

RMO

mode 30, 32

RMO memory model 249

round robin arbitration priority

no System Controller (SC) request 87

round robin arbitration protocol 85

round robin protocol

unfair by design 87

Rounding Direction (RD) field of FSR

register 246
rs1 360
Sun Microelectronics
387

UltraSPARC User’s Manual S
rs2 360
RSTVaddr 171, 236

S
S_BERR 111

S_CBP_REQ 122

S_CP*_REQ 111

S_CPB_MSI_REQ 97, 141, 324

S_CPB_REQ 97, 101, 106, 122, 132, 141, 324

S_CPD_REQ 101, 108, 122, 134, 141, 143, 324

S_CPI_REQ 96 to 97, 101, 105, 107, 113, 115, 119,

122, 133, 137, 141, 324

S_CPI_REQS_INV_REQ 324

S_CRAB 97, 120, 122, 132 to 134, 137

S_ERR 102 to 105, 120, 122, 125, 128

S_IDLE 120, 122

S_INAK 117, 120 to 122, 125, 129

S_INV_REQ 96 to 97, 101, 105 to 106, 111, 113,

115, 119, 122, 133 to 134, 138, 141 to 144, 324

S_OAK 97, 103, 120 to 122, 125, 128, 134, 138

S_RAS 120, 122

S_RBS 97, 102 to 104, 120, 122, 131 to 132, 134

S_RBU 97, 102 to 103, 120, 122, 131, 133, 135, 137

to 138

S_REPLY 100, 111, 113 to 114, 120 to 121, 123 to

125, 127, 129, 144, 295

assertion 128
data stall 124
encodings 120
packet format illustrated 118 to 119

strongly ordered by transaction class 120

timing 123
type definitions 122

S_REPLY (rules) 120

S_REPLY acknowledgment 93

S_REPLY pins 75, 338 to 339

S_REPLY signals 342 to 343

S_REPLY transaction 93

S_REQ 100 to 101, 111, 113, 115, 118 to 120, 122,

142 to 143, 153

S_REQ / P_REPLY combination 93

S_REQ transaction 92 to 93

S_RTO 102 to 105, 111, 120, 122, 125, 128

S_SRS 120

S_SWIB 116, 120, 122

S_WAB 97, 105, 113, 115, 117, 120, 122, 129, 135

S_WAS 110 to 111, 120, 122, 129

S_WBCAN 97, 101, 105, 113, 115, 120 to 122, 125,

129, 137 to 138

S0, see Select Code 0 (S0) field of PCR register
S1, see Select Code 1 (S1) field of PCR register
SAPEN, see System Address Parity Error Enable

(SAPEN) field of ASI_ESTATE_ERROR_
EN_REG register

SAVE instruction 240

SC_DATA_STALL pin 338

SC_DATA_STALL signal 343

SC_ECC_VALID pin 338

SC_ECC_VALID signal 343

SC_RQ pin 339

SC_RQ signal 342

Scalable Processor Architecture 9

scalarity 4
scale_factor field of GSR register 198, 201 to 204

scale_factor, see scale_factor field of GSR register
scheduling 249

SCIQ1, see Number of Class 1 Transactions (SCIQ1)
subfield of UPA_CONFIG register

SCLK_MODE pin 340

SContext field 57

SDB Error Control Register 185
SDBCLKA signal 342

SDBCLKB signal 342

SEC-DED-S4ED code 75

Secondary Context Register 57

secure environment 240

Select Code 0 (S0) field of PCR register 320
Select Code 1 (S1) field of PCR register 320
self-modifying code 34, 247

and FLUSH 34

sequence_error floating-point trap type 246, 358

serial scan interface 329

SET_SOFTINT Ancillary State Register

(ASR) 167

SET_SOFTINT Register 167

SET_SOFTINT register 157
Sun Microelectronics
388

S Index
set-associative cache 274

SFAR register 49

SFSR register 49

shall 360
Shared (S) state 82

shared cache block 361

shared TSB 46

shift instructions

dedicated hardware 284

short floating-point load instructions 227, 251

short floating-point store instructions 227, 251

should 361
SHUTDOWN instruction 195, 253, 327

side effect 361
side-effect

field in TTE 43

Side-Effect (E) field of SFSR register 59
Side-Effect (E) field of TTE 248

Side-effect (E) field of TTE 43
side-effect accesses 38
side-effect attribute 248

and noncacheability 31

side-effect bit 40

side-effects 30

Signal Monitor (SIGM) instruction 237

signal monitor (SIGM) instruction 169, 171, 237

in non-privileged mode 237

signed loads 273

sign-extended virtual address fields 23

silent loads

equivalent to non-faulting loads 280

single-bit ECC error 178

Size, see Page Size (Size) field of TTE
slave

UltraSPARC-I as 75

Slave Interface (valid S_REPLY & P_REPLY

types) 130

slave reads

in power-down mode 327

snoop 93, 153, 169, 178 to 179, 274, 277, 324

D-Cache 8

handled in ECU 9

snoop hits 357

snooping 33, 361
store buffer 256

Soft, see Software-Defined (Soft) field of TTE
Soft2, see Software-Defined (Soft2) field of TTE
SOFTINT Register 161, 166
SOFTINT register 250

SOFTINT_REG Ancillary State Register

(ASR) 167

SOFTINT_REG register 157

software cache flush 29

Software Interrupt (SOFTINT) field of SOFTINT

register 166

Software Interrupt (SOFTINT) register 166
software pipelining 4

Software Translation Table 23, 44, 247

software_initiated_reset trap 158

Software-Defined (Soft) field of TTE 43, 367
Software-Defined (Soft2) field of TTE 43
Software-Initiated Reset (SIR) 169, 171, 237

source register 360

source register dependency 297

SPARC

brief history 9

SPARC International

address 10

SPARC-V8 compatibility 33

SPARC-V8 Reference MMU 21, 24

SPARC-V9

UltraSPARC extensions 10

SPARC-V9 architecture 10

SPARC-V9 compliance 235, 359

speculative load 31, 48, 248, 361
speculative load to page marked with E-bit 31

speculative loads

support for 4

spill_n_normal trap 159

spill_n_other trap 159

Split field of TSB register 62
split TSB 46

Split, see Split Region (Split) field of TSB register
spurious loads

eliminating 279

SRAM components 10
Sun Microelectronics
389

UltraSPARC User’s Manual T
ST, see System Trace (ST) field of PCR register
stable storage 28 to 29

state transition

invariants 95

STBAR (SPARC-V8) 32

equivalent to MEMBAR #StoreStore 33

STD instruction 249

STDA instruction 227, 231

STDF_mem_address_not_aligned trap 159, 249

steady state loops 268

store

block commit 18

outstanding 294
Store Buffer 15

store buffer 4, 8, 32, 40, 277 to 280, 291, 293 to 295

compression 31, 279, 294, 324

compression (disabaled for noncacheable

accesses) 38
full condition 279

illustrated 5

merging 38

snooping 256 to 257

store buffer compression 40
store buffers

virtually tagged 33

store dependency 294
stores

delayed by loads 40
high-water mark 278

STQF instruction 249

STQFA instruction 249

strong ordering 31

between interconnect transactions 141

Strong Sequential Order 257

sub-block granularity 279

superscalar processor 3

supervisor software 361
supported traps 158

SWAP instruction 35
synchronous arbitration 85

Synchronous Fault Address Register (SFAR) 61
Synchronous Fault Status Register (SFSR) 58

illustrated 58

synchronous static RAMs

in E-Cache 77

SYSADDR

pins 339

SYSADDR bus 85, 87, 92, 116, 119, 138 to 139, 143

arbitration protocol 84
current driver 84
dead cycle when switching drivers 85

interconnection topology 84

interconnection topology illustrated 84

SYSADDR signals 341

SYSCLKA pin 338, 340

SYSCLKA signal 343

SYSCLKB pin 338, 340

SYSCLKB signal 343

SYSDATA bus 105, 116 to 117, 119, 121 to 125, 129

dead cycles 121

SYSDATA pins 338

SYSDATA signals 343

SYSECC pins 338

SYSECC signals 343

SYSID pins 338

SYSID signals 343

system address parity error 175

System Bus Time Out (TO) Error field of

AFSR 181
system bus time-out 176

System Controller (SC) 84, 88

System Data Bus (SDB)

transaction set 75

System Data Bus (SYSDATA) 75
system fatal errors 175

System Interconnect 295

illustrated 5

latency 283, 293

System Trace (ST) field of PCR register 320

T
Tag Access Register 46, 62, 64

tag parity syndrome 181

tag_overflow trap 159

TAP controller state machine 329

Target ID 143

Tcc instruction
Sun Microelectronics
390

T Index
reserved fields 235

TCK IEEE 1149.1 signal 330
TCK pin 338, 341

TCK signal 342 to 343

TDATA pins 339

TDATA signals 341

TDI IEEE 1149.1 signal 330
TDI pin 338, 341

TDI signal 342 to 343

TDO IEEE 1149.1 signal 330
TDO pin 338, 341

TDO signal 342 to 343

TEM, see Trap Enable Mask (TEM) field of FSR
register

terminated

instruction 15

test access port (TAP) 329
Test Access Port (TAP) Controller

state diagram illustrated 331

Test Access Port (TAP) controller 330

textual conventions 11

bold font 11

fonts 11

italic font 11

italic sans serif font 11

typewriter font 11

underbar characters 11

upper case 11

The SPARC Architecture Manual, Version 9 10

thread scheduling 249

three-dimensional array addressing

instructions 222

three-dimensional image processing 7

TICK Compare (TICK_CMPR) field of TICK

Register 249

TICK Compare (TICK_CMPR) field of TICK

register 250
Tick Compare (TICK_CMPR) field of TICK

Register 166

Tick Interrupt (TICK_INT) field of SOFTINT

register 166

TICK Register 285

illustrated 239

TICK_CMPR, see Tick Compare (TICK_CMPR)
field of TICK_compare register

TICK_CMPR_REG register 157

TICK_INT 167, 250

TICK_REG Ancillary State Register (ASR) 156
Timeout 122

TL Register 285

TLB bypass operation 69

TLB Data Access register 65 to 66

TLB Data In register 46, 65 to 66

TLB demap operation 69

TLB hit 23, 361
TLB miss 23, 44, 361

and non-faulting load 36

TLB miss handler 42, 45 to 46, 55

TLB operations 69

TLB read operation 69

TLB Tag Read register 66

TLB translation operation 69

TLB write operation 69

TLB-miss handler 47

TMS IEEE 1149.1 signal 330
TMS pin 338, 341

TMS signal 342 to 343

TNPC Register 176 to 177

TOE_L pin 340

TOE_L signal 80, 341

Total Store Order (TSO) memory model 255 to

256

TPAR pins 339

TPAR signals 341

TPC Register 176

transaction

cache coherent 102
multiple outstanding 126

transaction sequences 131
transactions

interconnect 92
minimal ordering requirements 127

transient buffer 98

translating ASI 146, 305

Translation Lookaside Buffer (TLB) 224, 247, 361
data 17
Sun Microelectronics
391

UltraSPARC User’s Manual U
hit 14

instruction 17

miss 14

miss handler 29

miss strategy 8

reset 55

Translation Lookaside Buffer (TLB) miss

handler 229

Translation Storage Buffer (TSB) 23, 42, 44, 61,

229, 247, 267

Translation Table Entry (TTE) 41, 48

illustrated 41

trap 361
resolution 15

Trap Base Address (TBA) register 361

Trap Enable Mask (TEM) field of FSR

register 242 to 243, 245 to 247

trap global registers 251

trap registers 7

trap stack 236, 252

trap state registers 236

trap_instruction trap 159

traps

MMU generated 47

tristate output enables

registered 85

TRST_L IEEE 1149.1 signal 330
TRST_L pin 338, 341

TRST_L signal 342 to 343

TSB

locked items 47

TSB caching 45

TSB miss handler 46

TSB organization 45

TSB pointer logic 70

TSB Pointer Register 63

TSB Register 44

TSB Tag Target Register 47, 57

TSB_Base 61

TSB_Base field of TSB Register 61
TSB_Base, see Base Address (TSB_Base) field of TSB

register
TSB_Size field of TSB register 46, 62

TSB_Size, see TSB Size (TSB_Size) field of TSB
register

TSO 295

mode 30, 32

ordering 30

TSO memory model 249

TSTATE 253

TSYN_WR_L pin 340

TSYN_WR_L signal 341

turn-around penalty 9

none for write-to-read transition 83

read-to-write transition 83

TWE_L signal 79

two-dimensional image processing 7

U
UART 30

UDB Error Enable Register 184

UDB_CE pin 338

UDB_CE signal 343

UDB_CEH pin 337

UDB_CEH signal 342

UDB_CEL pin 337

UDB_CEL signal 342

UDB_CNTL pins 337 to 338

UDB_CNTL signals 342 to 343

UDB_H pin 338

UDB_H signal 343

UDB_UE pin 338

UDB_UE signal 343

UDB_UEH pin 337

UDB_UEH signal 342

UDB_UEL pin 337

UDB_UEL signal 342

UltraSPARC extentions to SPARC-V9 10

UltraSPARC_I Data Buffer (UDB) Error

Register 175

UltraSPARC-I architecture

overview 3
UltraSPARC-I block diagram 5

UltraSPARC-I Data Buffer (UDB) 10, 74, 127, 175,

184, 196, 291, 294

as E-Cache client 77
Sun Microelectronics
392

V Index
illustrated 10

interaction with E-Cache 76

interface pins defined 337

UltraSPARC-I Data Buffer (UDB) Error

Register 186

UltraSPARC-I extended instructions 253

UltraSPARC-I external interfaces

illustrated 74

UltraSPARC-I interconnect transactions 92
UltraSPARC-I internal ASIs 39

UltraSPARC-I internal registers 50

UltraSPARC-I slave 84

UltraSPARC-I subsystem

illustrated 10

UltraSPARC-I trap levels

illustrated 237

unassigned 362
uncorrectable ECC error 177, 179

Uncorrectable ECC Error (UE) field of AFSR 181
uncorrectable error 179

uncorrectable memory ECC error 182

undefined 362
underflow exception 243

unfinished_FPop floating-point trap type 242,

244, 246, 358

unimplemented 362
unimplemented instructions 235

unimplemented_FPop floating-point trap

type 244, 246, 358

unit of coherence 30

Universal Asynchronous Receiver Transmitter

(UART) 30

unpredictable 362
unrestricted 362
UPA Capabilities (UPACAP) field of UPA_

PORT_ID register 153
UPA latency 295

UPA Port (arbitration signals) 85

UPA Port (interface busses) 339

UPA Port (transaction set summary) 129

UPA_CONFIG Register 154
illustrated 154

UPA_PORT_ID Register 152
illustrated 153

shadowed 156

UPA_Slave_Int_L signal

unused in UltraSPARC-I 153

UPACAP, see UPA Capabilities (UPACAP) field of
UPA_PORT_ID register

UPACAP, see UPA Capabilities (UPACAP) subfield
of UPA_CONFIG register

user thread

termination 40

User Trace (UT) field of PCR register 319, 321

UserTrace (UT) field of PCR register 320
UT, see User Mode Trace (UT) field of PCR register

V
V, see Valid (V) field of TTE
VA Data Watchpoint Register 49

illustrated 305

VA Data Watchpoint register 305

VA out of range 60

VA Watchpoint Address Register 56

VA_tag field of TTE 42
VA_tag, see Virtual Address Tag (VA_tag) field of

TTE
VA_watchpoint trap 159, 226, 228 to 229, 231, 305

Valid (V) field of TTE 42
ver, see Version (ver) field of FSR register
Version (ver) field of FSR register 246
Victim Writeback transaction 135

victimized block 114, 137 to 138

victimized cache line 83

victimized line 113 to 114

clean 114

virtual address 357, 362
out of range 22

Virtual Address Data Watchpoint Read Enable

(VR) field of LSU_Control_Register 308
Virtual Address Data Watchpoint Write Enable

(VW) field of LSU_Control_Register 308
virtual address fields

sign extended 23

virtual address space

illustrated 23, 238

size 3
Sun Microelectronics
393

UltraSPARC User’s Manual W
virtual color 28 to 29

virtual noncacheable accesses 18

virtual page number 21

virtual_address_data_watchpoint_mask 308

virtually cacheable 28

virtually indexed, physically tagged (VIPT) 272

cache 8

virtually indexed, physically tagged (VIPT)

cache 17

virtually noncacheable 28

virtually tagged store buffers 33

virtual-to-physical address mapping 145

virtual-to-physical address translation 21, 255

illustrated 22

VM, see Virtual Address Data Watchpoint Mask
(VM) field of LSU_Control_Register

VR, see Virtual Address Data Watchpoint Read
Enable (VR) field of LSU_Control_Register

VW, see Virtual Address Data Watchpoint Write
Enable (VW) field of LSU_Control_Register

W
W Stage 276, 285 to 287, 294

W, see Write (W) field of SFSR register
W1 Stage

virtual stage 289

Watchdog Reset (WDR) 169, 171, 236

watchdog_reset trap 158

watchpoint trap 49, 304

WB, see Number of Writebacks (WB) subfield of
UPA_CONFIG register

window_fill trap 238

Writable (W) field of TTE 44
Write (W) field of SFSR register 59
Write (W) Stage 15

illustrated 11

Write-After-Read (WAR) hazard 280

writeback 96, 362
Writeback (rules) 114

Writeback Data Parity Error (WP) field of

AFSR 181
writeback request 92

Writeback transaction 104, 114, 119, 136 to 137,

141

cancellation 114 to 115

WritebackInvalidate transaction 141

writebacks

cache line 77

write-invalidate cache coherency protocol 98

WriteInvalidate transaction 92, 105
write-through cache 272

WSTATE Register 285

X
X1 Stage 14

illustrated 11

X2 Stage 15
illustrated 11

X3 Stage 15
illustrated 11

XIR_L pin 341

XIR_L signal 342

Y
Y_REG Ancillary State Register (ASR) 156
Sun Microelectronics
394

	Overview
	A Brief History of SPARC
	How to Use This Book
	Textual Conventions
	Contents

	 UltraSPARC Basics 1
	1.1� Overview
	1.2� Design Philosophy
	Table�1�1 Implementation Technologies and Cycle Ti...

	1.3� Component Overview
	Figure�1�1 �UltraSPARC Block Diagram
	1.3.1� Prefetch and Dispatch Unit (PDU)
	1.3.2� Instruction Cache (I-Cache)
	1.3.3� Integer Execution Unit (IEU)
	Table�1�2 Supported Trap Levels
	1.3.4� Floating-Point Unit (FPU)
	1.3.5� Graphics Unit (GRU)
	1.3.6� Memory Management Unit (MMU)
	1.3.7� Load/Store Unit (LSU)
	1.3.8� Data Cache (D-Cache)
	1.3.9� External Cache Unit (ECU)
	Table�1�3 Supported E�Cache Sizes
	Table�1�4 Supported E�Cache SRAM Modes
	1.3.10� Memory Interface Unit (MIU)
	Table�1�5 Model-Dependent Processor : System Clock...

	1.4� �UltraSPARC Subsystem
	Figure�1�2 �UltraSPARC Subsystem

	Processor Pipeline 2
	2.1� Introductions
	Figure�2�1 �UltraSPARC Pipeline Stages (Simplified...

	2.2� Pipeline Stages
	Figure�2�2 �UltraSPARC Pipeline Stages (Detail)
	2.2.1� Stage 1: Fetch (F) Stage
	2.2.2� Stage 2: Decode (D) Stage
	2.2.3� Stage 3: Grouping (G) Stage
	2.2.4� Stage 4: Execution (E) Stage
	2.2.5� Stage 5: Cache Access (C) Stage
	2.2.6� Stage 6: N1 Stage
	2.2.7� Stage 7: N2 Stage
	2.2.8� Stage 8: N3 Stage
	2.2.9� Stage 9: Write (W) Stage

	Cache Organization 3
	3.1� Introduction
	3.1.1� Level-1 Caches
	3.1.2� Level-2 PIPT External Cache (E-Cache)

	Overview of the MMU 4
	4.1� Introduction
	4.2� Virtual Address Translation
	Figure�4�1 Virtual-to-physical Address Translation...
	Figure�4�2 �UltraSPARC’s 44-bit Virtual Address Sp...
	Figure�4�3 Software View of the �UltraSPARC MMU

	Cache and Memory Interactions 5
	5.1� Introduction
	5.2� Cache Flushing
	5.2.1� Address Aliasing Flushing
	5.2.2� Committing Block Store Flushing
	5.2.3� Displacement Flushing

	5.3� Memory Accesses and Cacheability
	5.3.1� Coherence Domains
	Code�Example�5�1 Memory Ordering and MEMBAR Exampl...
	5.3.2� Memory Synchronization: MEMBAR and FLUSH
	5.3.3� Atomic Operations
	Table�5�1 ASIs that Support SWAP, LDSTUB, and CAS
	5.3.4� Non-Faulting Load
	5.3.5� PREFETCH Instructions
	Table�5�2 PREFETCH{A} Instruction Support
	Table�5�3 PREFETCH{A} Variants
	5.3.6� Block Loads and Stores
	5.3.7� I/O and Accesses with Side-effects
	5.3.8� Instruction Prefetch to Side-Effect Locatio...
	5.3.9� Instruction Prefetch When Exiting RED_state...
	5.3.10� �UltraSPARC Internal ASIs

	5.4� Load Buffer
	5.5� Store Buffer
	5.5.1� Stores Delayed by Loads
	5.5.2� Store Buffer Compression

	MMU Internal Architecture 6
	6.1� Introduction
	6.2� Translation Table Entry (TTE)
	Figure�6�1 Translation Table Entry (TTE) (from TSB...
	Table�6�1 Size Field Encoding (from TTE)
	Table�6�2 Cacheable Field Encoding (from TSB)

	6.3� Translation Storage Buffer (TSB)
	Figure�6�2 TSB Organization
	6.3.1� Hardware Support for TSB Access
	6.3.2� Alternate Global Selection During TLB Misse...

	6.4� MMU-Related Faults and Traps
	Table�6�3 MMU Traps
	6.4.1� Instruction_access_MMU_miss Trap
	6.4.2� Instruction_access_exception Trap
	6.4.3� Data_access_MMU_miss Trap
	6.4.4� Data_access_exception Trap
	6.4.5� Data_access_protection Trap
	6.4.6� Privileged_action Trap
	6.4.7� Watchpoint Trap
	6.4.8� Mem_address_not_aligned Trap

	6.5� MMU Operation Summary
	Table�6�4 D-MMU Operations for Normal ASIs �
	Table�6�5 I-MMU Operations for Normal ASIs

	6.6� ASI Value, Context, and Endianness Selection ...
	Table�6�6 ASI Mapping for Instruction Accesses
	Table�6�7 ASI Mapping for Data Accesses
	Table�6�8 I-MMU and D-MMU Context Register Usage

	6.7� MMU Behavior During Reset, MMU Disable, and R...
	6.8� Compliance with the SPARC�V9 Annex F
	Table�6�9 MMU Compliance w/SPARC�V9 Annex F Protec...

	6.9� MMU Internal Registers and ASI Operations
	6.9.1� Accessing MMU Registers
	Table�6�10 �UltraSPARC MMU Internal Registers and ...
	6.9.2� I-/D-TSB Tag Target Registers
	Figure�6�3 MMU Tag Target Registers (Two Registers...
	6.9.3� Context Registers
	Figure�6�4 D-MMU Primary Context Register
	Figure�6�5 D-MMU Secondary Context Register
	Figure�6�6 D-MMU Nucleus Context Register
	6.9.4� I-/D-MMU Synchronous Fault Status Registers...
	Figure�6�7 I� and D�MMU Synchronous Fault Status R...
	Table�6�11 MMU Synchronous Fault Status Register F...
	Table�6�12 MMU SFSR Context ID Field Description
	6.9.5� I-/D-MMU Synchronous Fault Address Register...
	Figure�6�8 D�MMU Synchronous Fault Address Registe...
	6.9.6� I-/D- Translation Storage Buffer (TSB) Regi...
	Figure�6�9 I-/D-TSB Register Format
	6.9.7� I-/D-TLB Tag Access Registers
	Figure�6�10 I/D MMU TLB Tag Access Registers
	6.9.8� I-/D-TSB 8 Kb/64 Kb Pointer and Direct Poin...
	Figure�6�11 I-/D-MMU TSB 8 Kb/64 Kb Pointer and D-...
	6.9.9� I-/D-TLB Data-In/Data-Access/Tag-Read Regis...
	Table�6�13 Effect of Loads and Stores on MMU Regis...
	Figure�6�12 MMU I-/D-TLB Data In/Access Registers
	Figure�6�13 MMU TLB Data Access Address, in Altern...
	Figure�6�14 I-/D-MMU TLB Tag Read Registers
	6.9.10� I-/D-MMU Demap
	Figure�6�15 MMU Demap Operation Format
	6.9.11� I-/D-Demap Page (Type=0)
	6.9.12� I-/D-Demap Context (Type=1)

	6.10� MMU Bypass Mode
	Table�6�16 Physical Page Attribute Bits for MMU By...

	6.11� TLB Hardware
	6.11.1� TLB Operations
	6.11.2� TLB Replacement Policy
	6.11.3� TSB Pointer Logic Hardware Description
	Figure�6�16 Formation of TSB Pointers for 8Kb and ...
	Code�Example�6�1 Pseudo-code for �UltraSPARC D-MMU...

	 UltraSPARC External Interfaces 7
	7.1� Introduction
	7.2� Overview of �UltraSPARC External Interfaces
	Table�7�1 Model-Dependent Interface Sizes
	Figure�7�1 Main �UltraSPARC Interfaces
	7.2.1� The System Data Bus (SYSDATA)
	Figure�7�2 Data and ECC Byte Addresses Within a Qu...
	Table�7�2 Quadword Ordering

	7.3� Interaction Between E�Cache and UDB
	7.3.1� Overview
	Table�7�3 Supported E�Cache Sizes (Same as Table�1...
	Table�7�4 Supported Read Buffer Depth
	Table�7�5 Supported Number of Writeback Buffer Ent...
	7.3.2� �UltraSPARC E�Cache and UDB Transactions
	Figure�7�3 Timing for Coherent Read Hit (1–1–1 Mod...
	Figure�7�4 Timing for Coherent Read Hit (2–2 Mode)...
	Figure�7�5 Timing for Coherent Write Hit to M Stat...
	Figure�7�6 Timing for Coherent Write Hit to M Stat...
	Figure�7�7 Timing for Coherent Writes with E-to-M ...
	Figure�7�8 Timing Overlap: Tag Access / Data Write...
	Figure�7�9 Read-to-Write Bus Turnaround Penalty (1...

	7.4� SYSADDR Bus Arbitration Protocol
	7.4.1� SYSADDR Bus Interconnection Topology
	Figure�7�10 SYSADDR Bus Interconnection Topology
	7.4.2� Distributed Arbitration
	7.4.3� Arbitration Signals
	Table�7�6 Round Robin Arbitration Priority, withou...
	Figure�7�11 Uniprocessor: Back-to-Back Packets—No ...
	Figure�7�12 Arbitration: Back-to-Back Packets—No O...
	Figure�7�13 Arbitration: Change Of Ownership
	Figure�7�14 Arbitration: Current Driver Loses Owne...
	Figure�7�15 Arbitration: SC Arbitrates and Sends a...
	Figure�7�16 Arbitration: SC Gives Up Ownership to ...
	Figure�7�17 Arbitration: Bus Quiescent—Port1 Becom...
	Figure�7�18 Arbitration: SC Becomes Current Driver...

	7.5� �UltraSPARC Interconnect Transaction Overview...
	7.5.1� Cache Line and Writeback Buffer Ownership W...
	Figure�7�19 S_REQ / P_REPLY Window

	7.6� Cache Coherence Protocol
	Table�7�7 E�Cache Coherency State Definition
	7.6.1� State Transitions
	Figure�7�20 Cache Coherence Protocol State Diagram...
	Table�7�8 PREFETCH{A} Instruction Support
	Table�7�9 Transitions Allowed for Cache Coherence ...
	7.6.2� Cache Coherence Model
	Figure�7�21 Cache Coherence Model Using Centralize...
	7.6.3� Cache Coherence Sequence in Systems with Dt...
	7.6.4� Cache Coherence Sequence in Systems without...

	7.7� Cache Coherent Transactions
	7.7.1� ReadToShare (P_RDS_REQ)
	Table�7�10 Supported Number of Outstanding ReadToS...
	7.7.2� ReadToShareAlways (P_RDSA_REQ)
	7.7.3� ReadToOwn (P_RDO_REQ)
	Table�7�11 Supported Number of Outstanding ReadToO...
	7.7.4� ReadToDiscard (P_RDD_REQ)
	Table�7�12 Supported Number of Outstanding ReadToD...
	7.7.5� Writeback (P_WRB_REQ)
	7.7.6� WriteInvalidate (P_WRI_REQ)
	7.7.7� Invalidate (S_INV_REQ)
	7.7.8� Copyback (S_CPB_REQ)
	7.7.9� CopybackInvalidate (S_CPI_REQ)
	7.7.10� CopybackToDiscard (S_CPD_REQ)

	7.8� Non-Cached Data Transactions
	7.8.1� NonCachedRead (P_NCRD_REQ)
	Table�7�13 Supported Number of Outstanding NonCach...
	7.8.2� NonCachedBlockRead (P_NCBRD_REQ)
	Table�7�14 Supported Number of Outstanding NonCach...
	7.8.3� NonCachedWrite (P_NCWR_REQ)
	7.8.4� NonCachedBlockWrite (P_NCBWR_REQ)

	7.9� S_RTO/S_ERR
	7.10� S_REQ
	Table�7�15 Worst-Case Delay Between S_REQ and P_RE...

	7.11� Writeback Issues
	Table�7�16 Supported Number of Outstanding Writeba...
	7.11.1� Clean Victim Handling
	7.11.2� Dirty Victim Handling
	7.11.3� Writeback Cancellation Requirement
	7.11.4� Potential Race Condition—Copyback of Victi...

	7.12� Interrupts (P_INT_REQ)
	7.12.1� Extended Interrupt Target ID
	7.12.2� P_IAK Assertion

	7.13� P_REPLY and S_REPLY
	7.13.1� P_REPLY
	Figure�7�22 P_REPLY Packet Format (Cycle 2 not pre...
	Table�7�17 P_REPLY Encoding
	Table�7�18 P_REPLY Type Definitions �
	7.13.2� S_REPLY
	Figure�7�23 S_REPLY Packet Format
	Table�7�19 S_REPLY Encoding
	Table�7�20 S_REPLY Type Definitions �
	7.13.3� P_REPLY and S_REPLY Timing
	Figure�7�24 S_REPLY Timing: �UltraSPARC Sourcing B...
	Figure�7�25 S_REPLY Timing: �UltraSPARC Receiving ...
	Figure�7�26 P_REPLY Timing: Blk/Single/Coherent Rd...
	Figure�7�27 Back-to-Back Coherent S_REQs to �Ultra...
	Figure�7�28 S_REPLY Pipelining to �UltraSPARC for ...
	7.13.4� Data Stall
	Figure�7�29 Data_Stall to �UltraSPARC Sourcing Dat...
	Figure�7�30 Data_Stall to �UltraSPARC Sinking Data...

	7.14� Multiple Outstanding Transactions
	7.14.1� Ordering of S_REPLYs
	7.14.2� Minimal Ordering Requirements
	7.14.3� Class 1 Strong Ordering
	7.14.4� Blocked Issue of Reads with Writebacks
	7.14.5� Limiting the Number of Transactions in a C...
	7.14.6� S_REPLY Timing Constraints

	7.15� Transaction Set Summary
	Table�7�21 Requests and Replies Generated by �Ultr...
	Table�7�22 Requests and Replies Generated by SC
	Table�7�23 Valid Request and Reply Types—�UltraSPA...
	Table�7�24 Valid Request and Reply Types—SC to �Ul...

	7.16� Transaction Sequences
	7.16.1� ReadToShare Block
	Table�7�25 ReadToShare First Read
	7.16.2� ReadToShareAlways Block
	Table�7�26 ReadToShareAlways Instruction Miss
	7.16.3� ReadToShare Block
	Table�7�27 ReadToShare One Processor Has it Exclus...
	7.16.4� ReadToShare Block
	Table�7�28 ReadToShare Dirty Block
	7.16.5� ReadToOwn Block
	Table�7�29 ReadToOwn Shared Block
	7.16.6� ReadToOwn Block
	Table�7�30 ReadToOwn for Write Permission �
	7.16.7� ReadToDiscard Any Block
	Table�7�31 ReadToDIscard
	7.16.8� Victim Writeback
	Table�7�32 Victim Writeback, Read Miss Serviced Be...
	7.16.9� Victim Writeback Serviced Before Read
	Table�7�33 Victim Writeback: Writeback Serviced Be...
	7.16.10� ReadToShare Dirty Victimized Block
	Table�7�34 Copyback Dirty Victimized Block �
	7.16.11� ReadToOwn Dirty Victimized Block
	Table�7�35 Copyback-Invalidate Dirty Victimized Bl...
	7.16.12� ReadToOwn Dirty Victimized Block
	Table�7�36 Copyback-Invalidate Dirty Victimized Bl...

	7.17� Interconnect Packet Formats
	7.17.1� Request Packets
	Figure�7�31 Transaction Types
	Figure�7�32 Packet Format: Coherent P_REQ and S_RE...
	Figure�7�33 Packet Format: Noncached P_REQ Transac...
	Figure�7�34 Packet Format: P_INT_REQ Transaction
	7.17.2� Packet Description
	Table�7�37 Interconnect Transaction Type Encoding

	7.18� WriteInvalidate
	7.18.1� Using the IVA bit in a P_WRI_REQ

	Address Spaces, ASIs, ASRs, and Traps 8
	8.1� Overview
	8.2� Physical Address Space
	8.3� Alternate Address Spaces
	8.3.1� Supported SPARC�V9 ASIs
	Table�8�1 Mandatory SPARC�V9 ASIs �
	8.3.2� �UltraSPARC (Non-SPARC�V9) ASI Extensions
	Table�8�2 �UltraSPARC Extended (non-SPARC�V9) ASIs...
	8.3.3� Other �UltraSPARC ASI Extensions
	Figure�8�1 UPA_PORT_ID Register Format
	Figure�8�2 UPA_CONFIG Register (�UltraSPARC�I)
	Figure�8�3 UPA_CONFIG Register (�UltraSPARC�II)

	8.4� Ancillary State Registers
	8.4.1� Overview of ASRs
	8.4.2� SPARC�V9-Defined ASRs
	Table�8�3 Mandatory SPARC�V9 ASRs
	8.4.3� Non-SPARC�V9 ASRs
	Table�8�4 Non-SPARC�V9 ASRs

	8.5� Other �UltraSPARC Registers
	Table�8�5 Other �UltraSPARC Registers

	8.6� Supported Traps
	Table�8�6 Traps Supported in �UltraSPARC (Continue...

	Interrupt Handling 9
	9.1� Interrupt Vectors
	9.1.1� Interrupt Vector Dispatch
	Code�Example�9�1 Code Sequence For Interrupt Dispa...
	9.1.2� Interrupt Vector Receive
	Code�Example�9�2 Code Sequence for an Interrupt Re...

	9.2� Interrupt Global Registers
	9.3� Interrupt ASI Registers
	9.3.1� Outgoing Interrupt Vector Data<2:0>
	Table�9�1 Outgoing Interrupt Vector Data Register ...
	9.3.2� Interrupt Vector Dispatch
	9.3.3� Interrupt Vector Dispatch Status Register
	Table�9�2 Interrupt Dispatch Status Register Forma...
	9.3.4� Incoming Interrupt Vector Data<2:0>
	Table�9�3 Incoming Interrupt Vector Data Register ...
	9.3.5� Interrupt Vector Receive
	Table�9�4 Interrupt Receive Register Format

	9.4� Software Interrupt (SOFTINT) Register
	Table�9�5 SOFTINT Register Format
	Table�9�6 SOFTINT ASRs

	Reset and RED_state 10
	10.1� Overview
	10.1.1� Power-on Reset (POR) and Initialization
	10.1.2� Externally Initiated Reset (XIR)
	10.1.3� Software-Initiated Reset (SIR)
	10.1.4� Watchdog Reset (WDR) and error_state

	10.2� RED_state Trap Vector
	10.3� Machine State after Reset and in RED_state
	Table�10�1 Machine State After Reset and in RED_st...

	Error Handling 11
	11.1� Overview
	11.1.1� System Fatal Errors
	11.1.2� Deferred Errors
	11.1.3� Disrupting Errors

	11.2� Memory Errors
	11.2.1� Module Parity Errors
	11.2.2� E�Cache Tag Parity Error
	11.2.3� E�Cache Data Parity Error
	11.2.4� System ECC Error

	11.3� Memory Error Registers
	11.3.1� E�Cache Error Enable Register
	Table�11�1 E-Cache Error Enable Register Format
	11.3.2� Asynchronous Fault Status Register
	Table�11�2 Asynchronous Fault Status Register �
	Table�11�3 E-Cache Data Parity Syndrome Bit Orderi...
	Table�11�4 E-Cache Tag Parity Syndrome Bit Orderin...
	11.3.3� Asynchronous Fault Address Register
	Table�11�5 Asynchronous Fault Address Register
	Table�11�6 Error Detection and Reporting in AFAR a...
	11.3.4� �UltraSPARC Data Buffer (UDB) Error Regist...
	Table�11�7 UDB Error Register Format

	11.4� �UltraSPARC Data Buffer (UDB) Control Regist...
	Table�11�8 UDB Error Register Format

	11.5� Overwrite Policy
	11.5.1� AFAR Overwrite Policy
	11.5.2� AFSR Parity Syndrome (P_SYND) Overwrite Po...
	11.5.3� AFSR E-Cache Tag Parity (ETS) Overwrite Po...
	11.5.4� UDB ECC Syndrome (E_SYND) Overwrite Policy...

	Instruction Set Summary 12
	Table�12�1 Complete �UltraSPARC Instruction Set (C...

	 UltraSPARC Extended Instructions 13
	13.1� Introduction
	13.2� SHUTDOWN
	13.3� Graphics Data Formats
	13.3.1� 8-Bit Format
	13.3.2� Fixed Data Formats
	Figure�13�1 Graphics Data Formats

	13.4� Graphics Status Register (GSR)
	Figure�13�2 GSR Format (ASR 1016)

	13.5� Graphics Instructions
	13.5.1� Opcode Format
	13.5.2� Partitioned Add/Subtract Instructions
	13.5.3� Pixel Formatting Instructions
	Figure�13�3 FPACK16 Operation
	Figure�13�4 FPACK32 Operation
	Figure�13�5 FPACKFIX Operation
	Figure�13�6 FEXPAND Operation
	Figure�13�7 FPMERGE Operation
	13.5.4� Partitioned Multiply Instructions
	Figure�13�8 FMUL8x16 Operation
	Figure�13�9 FMUL8x16AU Operation
	Figure�13�10 FMUL8x16AL Operation
	Figure�13�11 FMUL8SUx16 Operation
	Code�Example�13�1 16-bit x 16-bit Æ 16-bit Multipl...
	Figure�13�12 FMUL8ULx16 Operation
	Figure�13�13 FMULD8SUx16 Operation
	Figure�13�14 FMULD8ULx16 Operation
	Code�Example�13�2 16-bit x 16-bit Æ 32-bit Multipl...
	13.5.5� Alignment Instructions
	Code�Example�13�3 Byte-Aligned 64-bit Load
	13.5.6� Logical Operate Instructions
	13.5.7� Pixel Compare Instructions
	13.5.8� Edge Handling Instructions
	Table�13�1 Edge Mask Specification
	Table�13�2 Edge Mask Specification (Little-Endian)...
	13.5.9� Pixel Component Distance (PDIST)
	13.5.10� Three-Dimensional Array Addressing Instru...
	Figure�13�15 Three Dimensional Array Fixed-Point A...
	Figure�13�16 Three Dimensional Array Blocked-Addre...
	Figure�13�17 Three Dimensional Array Blocked-Addre...
	Figure�13�18 Three Dimensional Array Blocked-Addre...
	Code�Example�13�4 Assembly of Components Along an ...

	13.6� Memory Access Instructions
	13.6.1� Partial Store Instructions
	13.6.2� Short Floating-Point Load and Store Instru...
	13.6.3� Atomic Quad Load
	13.6.4� Block Load and Store Instructions
	Code�Example�13�5 Byte-Aligned Block Copy Inner Lo...

	Implementation Dependencies 14
	14.1� SPARC�V9 General Information
	14.1.1� Level-2 Compliance (Impdep #1)
	14.1.2� Unimplemented Opcodes, ASIs, and ILLTRAP
	14.1.3� Trap Levels (Impdep #37, 38, 39, 40, 114, ...
	14.1.4� Trap Handling (Impdep #16, 32, 33, 35, 36,...
	Figure�14�1 Nested Trap Levels
	14.1.5� SIGM Support (Impdep #116)
	14.1.6� 44-bit Virtual Address Space
	Figure�14�2 �UltraSPARC’s 44-bit Virtual Address S...
	14.1.7� TICK Register
	Table�14�1 TICK Register Format
	14.1.8� Population Count Instruction (POPC)
	14.1.9� Secure Software
	14.1.10� Address Masking (Impdep #125)

	14.2� SPARC�V9 Integer Operations
	14.2.1� Integer Register File and Window Control R...
	14.2.2� Clean Window Handling (Impdep #102)
	14.2.3� Integer Multiply and Divide
	14.2.4� Version Register (Impdep #2, 13, 101, 104)...
	Table�14�2 Version Register Format
	Table�14�3 VER.impl Values by �UltraSPARC Model

	14.3� SPARC�V9 Floating-Point Operations
	14.3.1� Subnormal Operands & Results; Non-standard...
	Table�14�4 Subnormal Operand Trapping Cases (NS=0)...
	Table�14�5 Subnormal Result Trapping Cases (NS=0)
	14.3.2� Overflow, Underflow, and Inexact Traps (Im...
	14.3.3� Quad-Precision Floating-Point Operations (...
	Table�14�6 Unimplemented Quad-Precision Floating-P...
	14.3.4� Floating Point Upper and Lower Dirty Bits ...
	14.3.5� Floating-Point Status Register (FSR) (Impd...
	Table�14�7 Floating-Point Status Register Format �...
	Table�14�8 Floating-Point Rounding Modes
	Table�14�9 Floating-Point Trap Type Values �

	14.4� SPARC�V9 Memory-Related Operations
	14.4.1� Load/Store Alternate Address Space (Impdep...
	14.4.2� Load/Store ASR (Impdep #6,7,8,9, 47, 48)
	14.4.3� MMU Implementation (Impdep #41)
	14.4.4� FLUSH and Self-Modifying Code (Impdep #122...
	14.4.5� PREFETCH{A} (Impdep #103, 117)
	Table�14�10 PREFETCH{A} Variants (�UltraSPARC�II)
	14.4.6� Non-faulting Load and MMU Disable (Impdep ...
	14.4.7� LDD/STD Handling (Impdep #107, 108)
	14.4.8� FP mem_address_not_aligned (Impdep #109, 1...
	14.4.9� Supported Memory Models (Impdep #113, 121)...
	14.4.10� I/O Operations (Impdep #118, 123)

	14.5� Non-SPARC�V9 Extensions
	14.5.1� Per-Processor TICK Compare Field of TICK R...
	Table�14�11 TICK_compare Register Format
	14.5.2� Cache Sub-system
	14.5.3� Memory Management Unit
	14.5.4� Error Handling
	14.5.5� Block Memory Operations
	14.5.6� Partial Stores
	14.5.7� Short Floating-Point Loads and Stores
	14.5.8� Atomic Quad-load
	14.5.9� PSTATE Extensions: Trap Globals
	Table�14�12 Extended PSTATE Register
	Table�14�13 PSTATE Global Register Selection Encod...
	14.5.10� Interrupt Vector Handling
	14.5.11� Power Down Support and the SHUTDOWN Instr...
	14.5.12� �UltraSPARC Instruction Set Extensions (I...
	14.5.13� Performance Instrumentation
	14.5.14� Debug and Diagnostics Support

	SPARC�V9 Memory Models 15
	15.1� Overview
	15.2� Supported Memory Models
	15.2.1� TSO
	15.2.2� PSO
	15.2.3� RMO

	Code Generation Guidelines 16
	16.1� Hardware / Software Synergy
	16.2� Instruction Stream Issues
	16.2.1� �UltraSPARC Front End
	16.2.2� Instruction Alignment
	Figure�16�1 I�Cache Organization
	Figure�16�2 Odd Fetch to an I�Cache Line
	Figure�16�3 Next Field Aliasing Between Two Branch...
	Figure�16�4 Aliasing of Prediction Bits in a Rare ...
	Figure�16�5 Artificial Branch Inserted after a 32-...
	16.2.3� I�Cache Timing
	16.2.4� Executing Code Out of the E�Cache
	16.2.5� uTLB and iTLB Misses
	16.2.6� Branch Prediction
	Figure�16�6 Dynamic Branch Prediction State Diagra...
	Figure�16�7 Handling of Conditional Branches
	Figure�16�8 Handling of MOVCC
	16.2.7� I�Cache Utilization
	16.2.8� Handling of CTI couples
	16.2.9� Mispredicted Branches
	Figure�16�9 Cost of a Mispredicted Branch (Shaded ...
	Figure�16�10 Branch Transformation to Reduce Mispr...
	16.2.10� Return Address Stack (RAS)

	16.3� Data Stream Issues
	16.3.1� D�Cache Organization
	Figure�16�11 Logical Organization of D�Cache
	16.3.2� D�Cache Timing
	16.3.3� Data Alignment
	16.3.4� Direct-Mapped Cache Considerations
	16.3.5� D�Cache Miss, E�Cache Hit Timing
	Table�16�1 D�Cache Miss, E�Cache Hit Latency Depen...
	Figure�16�12 D�Cache Miss, E�Cache Hit (1�–1�–�1 m...
	16.3.6� Scheduling for the E�Cache
	Figure�16�13 Pipelined Loads to the E�Cache (1–1–1...
	Code�Example�16�1 Load Hit Bypassing Load Miss (No...
	Code�Example�16�2 Interleaved D�Cache Hits and Mis...
	Code�Example�16�3 Avoiding Bus Turnaround Penaltie...
	16.3.7� Store Buffer Considerations
	16.3.8� Read-After-Write and Write-After-Read Haza...
	Code�Example�16�4 RAW Hazard Penalty
	16.3.9� Non-Faulting Loads

	Grouping Rules and Stalls 17
	17.1� Introduction
	17.1.1� Textual Conventions
	17.1.2� Example Conventions

	17.2� General Grouping Rules
	17.3� Instruction Availability
	17.4� Single Group Instructions
	17.5� Integer Execution Unit (IEU) Instructions
	17.5.1� Multi-Cycle IEU Instructions
	17.5.2� IEU Dependencies

	17.6� Control Transfer Instructions
	17.6.1� Control Transfer Dependencies

	17.7� Load / Store Instructions
	17.7.1� Load Dependencies and Interaction with Cac...
	17.7.2� Store Dependencies

	17.8� Floating-Point and Graphic Instructions
	17.8.1� Floating-Point and Graphics Instruction De...
	17.8.2� Floating-Point and Graphics Instruction La...
	Table�17�1 Latencies for Floating-Point and Graphi...
	A.5.1� Instruction Breakpoint
	A.5.2� Data Watchpoint
	A.5.3� Virtual Address (VA) Data Watchpoint Regist...
	A.5.4� Physical Address Data Watchpoint Register
	A.6.1� Cache Control
	A.6.2� MMU Control
	A.6.3� Parity Control
	A.6.4� Watchpoint Control
	A.7.1� I-Cache Instruction Fields
	A.7.2� I-Cache Tag/Valid Fields
	A.7.3� I-Cache Predecode Field
	A.7.4� I-Cache LRU/BRPD/SP/NFA Fields
	A.8.1� D-Cache Data Field
	A.8.2� D-Cache Tag/Valid Fields
	A.9.1� E-Cache Data Fields
	A.9.2� E-Cache Tag/State/Parity Field Diagnostics ...
	A.9.3� E-Cache Tag/State/Parity Data Accesses
	B.4.1� Instruction Execution Rates
	B.4.2� Grouping (G) Stage Stall Counts
	B.4.3� Load Use Stall Counts
	B.4.4� Cache Access Statistics
	B.4.5� PCR.S0 and PCR.S1 Encoding
	D.3.1� TEST-LOGIC-RESET
	D.3.2� RUN-TEST/IDLE
	D.3.3� SELECT-DR-SCAN
	D.3.4� SELECT-IR-SCAN
	D.3.5� CAPTURE IR/DR
	D.3.6� SHIFT IR/DR
	D.3.7� EXIT-1 IR/DR
	D.3.8� PAUSE IR/DR
	D.3.9� EXIT-2 IR/DR
	D.3.10� UPDATE IR/DR
	D.5.1� Public Instructions
	D.5.2� Private Instructions
	D.6.1� Device ID Register
	D.6.2� Bypass Register
	D.6.3� Boundary Scan Register
	D.6.4� Private Data Registers
	E.2.1� �UltraSPARC Data Buffer (UDB) Interface Pin...
	E.2.2� �UltraSPARC Data Buffer (UDB) Pins
	E.2.3� System Interface Pins
	E.2.4� E�Cache Interface Pins
	E.2.5� Clock Interface Pins
	E.2.6� IEEE 1149.1 (JTAG) Interface Pins
	E.2.7� Initialization Interface Pins
	E.3.1� �UltraSPARC Signals
	E.3.2� �UltraSPARC Data Buffer (UDB) Signals

	General References
	Books
	Papers

	Sun Microelectronics (SME) Publications
	Data Sheets
	User’s Guides
	Other Materials

	How to Contact SME
	On Line Resources

