Network Working Group                              J.P. Vasseur (Editor) 
                                                     Cisco Systems, Inc. 
IETF Internet Draft                                J.L. Le Roux (Editor) 
                                                          France Telecom 
Proposed Status: Standard Track                           
Expires: July 2007                                           S. Yasukawa  
                                                                     NTT    
                                                              S. Previdi  
                                                               P. Psenak 
                                                     Cisco Systems, Inc. 
                                                              Paul Mabey 
                                                                 Comcast 
                                                 
                                                 
                                                                         
                                                 
                                                                         
                                                           December 2006 
 
 
   IGP Routing Protocol Extensions for Discovery of Traffic Engineering  
                            Node Capabilities 
 
                  draft-ietf-ccamp-te-node-cap-04.txt 
 
Status of this Memo 
    
   By submitting this Internet-Draft, each author represents that any 
   applicable patent or other IPR claims of which he or she is aware 
   have been or will be disclosed, and any of which he or she becomes 
   aware will be disclosed, in accordance with Section 6 of BCP 79. 
 
   Internet-Drafts are working documents of the Internet Engineering 
   Task Force (IETF), its areas, and its working groups. Note that other 
   groups may also distribute working documents as Internet-Drafts.  
    
   Internet-Drafts are draft documents valid for a maximum of six months 
   and may be updated, replaced, or obsoleted by other documents at any 
   time. It is inappropriate to use Internet- Drafts as reference 
   material or to cite them other than as "work in progress." 
    
   The list of current Internet-Drafts can be accessed at 
   http://www.ietf.org/ietf/1id-abstracts.txt. 
    
   The list of Internet-Draft Shadow Directories can be accessed at 
   http://www.ietf.org/shadow.html. 
 
 
 
 
 
 
Vasseur, Le Roux, et al.                                        [Page 1] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


    
Abstract 
    
   It is highly desired in several cases, to take into account Traffic 
   Engineering (TE) node capabilities during Multi Protocol Label 
   Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineered 
   Label Switched Path (TE-LSP)  selection, such as for instance the 
   capability to act as a branch Label Switching Router (LSR) of a 
   Point-To-MultiPoint (P2MP) LSP. This requires advertising these 
   capabilities within the Interior Gateway Protocol (IGP). For that 
   purpose, this document specifies Open Shortest Path First (OSPF) and 
   Intermediate System-Intermediate System (IS-IS) traffic engineering 
   extensions for the advertisement of control plane and data plane 
   traffic engineering node capabilities.   
 
Conventions used in this document 
 
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this 
   document are to be interpreted as described in RFC-2119. 
 
Table of Contents  
    
   1.      Terminology.................................................3 
   2.      Introduction................................................3 
   3.      TE Node Capability Descriptor...............................4 
   3.1.    Description.................................................4 
   3.2.    Required Information........................................4 
   4.      TE Node Capability Descriptor TLV formats...................5 
   4.1.    OSPF TE Node Capability Descriptor TLV format...............5 
   4.2.    IS-IS TE Node Capability Descriptor sub-TLV format..........6 
   5.      Elements of procedure.......................................7 
   5.1.    OSPF........................................................7 
   5.2.    IS-IS.......................................................8 
   6.      Backward compatibility......................................8 
   7.      Security Considerations.....................................9 
   8.      IANA considerations.........................................9 
   8.1.    OSPF TLV....................................................9 
   8.2.    ISIS sub-TLV................................................9 
   8.3.    Capability Registry.........................................9 
   9.      Acknowledgments............................................10 
   10.     References.................................................10 
   10.1.   Normative references.......................................10 
   10.2.   Informative References.....................................11 
   11.     Editors' Addresses.........................................11 
   12.     Contributors' Addresses....................................11 
   13.     Intellectual Property Statement............................12 
    
    
    
    

 
Vasseur, Le Roux, et al.                                      [Page 2] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


 
1. Terminology 
    
   This document uses terminologies defined in [RFC3031], [RFC3209] and 
   [RFC4461]. 
 
2. Introduction 
    
   Multi Protocol Label Switching-Traffic Engineering (MPLS-TE) routing 
   ([RFC3784], [RFC3630], [OSPFv3-TE]) relies on extensions to link 
   state Interior Gateway Protocols (IGP) ([IS-IS], [RFC2328], 
   [RFC2740]) in order to advertise Traffic Engineering (TE) link 
   information used for constraint based routing. Further Generalized 
   MPLS (GMPLS) related routing extensions are defined in [RFC4205] and 
   [RFC4203].  
    
   It is desired to complement these routing extensions in order to 
   advertise TE node capabilities, in addition to TE link information. 
   These TE node capabilities will be taken into account as constraints 
   during path selection. 
    
   Indeed, it is useful to advertise data plane TE node capabilities, 
   such as the capability for a Label Switching Router (LSR) to be a 
   branch LSR or a bud-LSR of a Point-To-MultiPoint (P2MP) Label 
   Switched Path (LSP). These capabilities can then be taken into 
   account as constraints when computing the route of TE LSPs. 
    
   It is also useful to advertise control plane TE node capabilities 
   such as the capability to support GMPLS signaling for a packet LSR, 
   or the capability to support P2MP (Point to Multipoint) TE LSP 
   signaling.  This allows selecting a path that avoids nodes that do 
   not support a given control plane feature, or triggering a mechanism 
   to support such nodes on a path. Hence this facilitates backward 
   compatibility. 
    
   For that purpose, this document specifies IGP (OSPF and IS-IS) 
   extensions in order to advertise data plane and control plane 
   capabilities of a node. 
    
   A new TLV is defined for OSPF, the TE Node Capability Descriptor TLV, 
   to be carried within the Router Information LSA ([OSPF-CAP]). 
   A new sub-TLV is defined for IS-IS, the TE Node Capability Descriptor 
   sub-TLV, to be carried within the IS-IS Capability TLV ([ISIS-CAP]). 
    
    
     
    
    
    
 


 
Vasseur, Le Roux, et al.                                      [Page 3] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


3. TE Node Capability Descriptor  
 
3.1. Description 
 
   LSRs in a network may have distinct control plane and data plane  
   Traffic Engineering capabilities. The TE Node Capability Descriptor  
   information defined in this document describes data and control plane 
   capabilities of an LSR. Such information can be used during path 
   computation so as to avoid nodes that do not support a given TE 
   feature either in the control or data plane, or to trigger procedures 
   to handle these nodes along the path (e.g, trigger LSP hierarchy to 
   support a legacy transit LSR on a P2MP LSP (see [RSVP-P2MP])).  
    
3.2. Required Information 
    
   The TE Node Capability Descriptor contains a variable length set of 
   bit flags, where each bit corresponds to a given TE node capability.  
              
   Five TE Node Capabilities are defined in this document: 
    
        - B bit: when set, this flag indicates that the LSR can act  
                 as a branch node on a P2MP LSP (see [RFC4461]);  
        - E bit: when set, this flag indicates that the LSR can act  
                 as a bud LSR on a P2MP LSP, i.e. an LSR that is both  
                 transit and egress (see [RFC4461]).    
        - M bit: when set, this flag indicates that the LSR supports  
                 MPLS-TE signaling ([RFC3209]);        
        - G bit: when set this flag indicates that the LSR supports  
                 GMPLS signaling ([RFC3473]); 
        - P bit: when set, this flag indicates that the LSR supports  
                 P2MP MPLS-TE signaling ([RSVP-P2MP]).  
 
   Note that new capability bits may be added in the future if required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vasseur, Le Roux, et al.                                      [Page 4] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


4. TE Node Capability Descriptor TLV formats  
    
4.1. OSPF TE Node Capability Descriptor TLV format  
 
   The OSPF TE Node Capability Descriptor TLV is a variable length TLV 
   that contains a series of bit flags, where each bit correspond to a 
   TE node capability. 
    
   The OSPF TE Node Capability Descriptor TLV is carried within an OSPF 
   Router Information LSA which is defined in [OSPF-CAP]. 
 
   The format of the OSPF TE Node Capability Descriptor TLV is the same 
   as the TLV format used by the Traffic Engineering Extensions to OSPF 
   [RFC3630]. That is, the TLV is composed of 2 octets for the type, 2 
   octets specifying the length of the value field and a value field.   
    
   The OSPF TE Node Capability Descriptor TLV has the following format:  
    
         TYPE     To be assigned by IANA (suggested value =1). 
         LENGTH   Variable (multiple of 4).  
         VALUE    Array of units of 32 flags numbered from the most  
                  significant bit as bit zero, where each bit represents   
                  a TE node capability.  
 
   The following bits are defined: 
 
     Bit       Capabilities 
 
      0      B bit: P2MP Branch Node capability: When set this indicates  
             that the LSR can act as a branch node on a P2MP LSP     
             [RFC4461].  
      1      E bit: P2MP Bud-LSR capability: When set, this indicates  
             that the LSR can act as a bud LSR on a P2MP LSP, i.e. an  
             LSR that is both transit and egress [RFC4461]. 
      2      M bit: If set this indicates that the LSR supports MPLS-TE     
             signaling ([RFC3209]).  
      3      G bit: If set this indicates that the LSR supports GMPLS       
             signaling ([RFC3473]).  
      4      P bit: If set this indicates that the LSR supports P2MP  
             MPLS-TE signaling ([RSVP-P2MP]).  
    
     5-31    Reserved for future assignments by IANA. 
          
          
          
          
          
          
          
          
    

 
Vasseur, Le Roux, et al.                                      [Page 5] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


4.2. IS-IS TE Node Capability Descriptor sub-TLV format 
 
   The IS-IS TE Node Capability Descriptor sub-TLV is a variable length 
   sub-TLV that contains a series of bit flags, where each bit 
   correspond to a TE node capability. 
    
   The IS-IS TE Node Capability Descriptor sub-TLV is carried within an 
   IS-IS CAPABILITY TLV which is defined in [ISIS-CAP]. 
    
   The format of the IS-IS TE Node Capability sub-TLV is the same as the 
   TLV format used by the Traffic Engineering Extensions to IS-IS 
   [RFC3784]. That is, the TLV is composed of 1 octet for the type, 1 
   octet specifying the TLV length and a value field.   
    
   The IS-IS TE Node Capability Descriptor sub-TLV has the following 
   format: 
 
      TYPE:   To be assigned by IANA (Suggested value =1)   
      LENGTH: Variable 
      VALUE:  Array of units of 8 flags numbered from the most  
              significant bit as bit zero, where each bit represents   
              a TE node capability.  
 
   The following bits are defined: 
 
     Bit       Capabilities 
 
      0      B bit: P2MP Branch Node capability: When set this indicates  
             that the LSR can act as a branch node on a P2MP LSP      
             [RFC4461].  
      1      E bit: P2MP Bud-LSR capability: When set, this indicates  
             that the LSR can act as a bud LSR on a P2MP LSP, i.e. an  
             LSR that is both transit and egress [RFC4461]. 
      2      M bit: If set this indicates that the LSR supports MPLS-TE      
             signaling ([RFC3209]).  
      3      G bit: If set this indicates that the LSR supports GMPLS  
             signaling ([RFC3473]).  
      4      P bit: If set this indicates that the LSR supports P2MP  
             MPLS-TE signaling ([RSVP-P2MP]).  
    
     5-7    Reserved for future assignments by IANA. 
    
    
    
    
    
    
    
    
    
    
    
 
Vasseur, Le Roux, et al.                                      [Page 6] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


5. Elements of procedure 
 
5.1. OSPF 
    
   The TE Node Capability Descriptor TLV is advertised, within an OSPFv2 
   Router Information LSA (Opaque type of 4 and Opaque ID of 0) 
   or an OSPFv3 Router Information LSA (function code of 12) which are 
   defined in [OSPF-CAP].  As such, elements of procedure are inherited 
   from those defined in [RFC2328], [RFC2740], and [OSPF-CAP]. 
    
   The TE Node Capability Descriptor TLV advertises capabilities that  
   may be taken into account as constraints during path selection. Hence  
   its flooding scope is area-local, and it MUST be carried within 
   OSPFv2 type 10 Router Information LSA (as defined in [RFC2370]) or an 
   OSPFv3 Router Information LSA with the S1 bit set and the S2 bit 
   cleared (as defined in [RFC2740]). 
 
   A router MUST originate a new OSPF router information LSA whenever  
   the content of the TE Node Capability Descriptor TLV changes or 
   whenever required by the regular OSPF procedure (LSA refresh (every 
   LSRefreshTime)).  
 
   The TE Node Capability Descriptor TLV is OPTIONAL and MUST NOT appear 
   more than once in an OSPF Router Information LSA. If a TE Node 
   Capability Descriptor TLV appears more than once in an OSPF Router 
   Information LSA, only the first occurrence MUST be processed and 
   other MUST be ignored.  
 
   When an OSPF LSA does not contain any TE Node capability Descriptor    
   TLV, this means that the TE Capabilities of that LSR are unknown.   
    
   Note that a change in any of these capabilities MAY trigger CSPF    
   computation, but MUST NOT trigger normal SPF computation. 
    
   Note also that TE node capabilities are expected to be fairly static.   
   They may change as the result of configuration change, or software  
   upgrade. This is expected not to appear more than once a day. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vasseur, Le Roux, et al.                                      [Page 7] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


5.2. IS-IS 
 
   The TE Node Capability sub-TLV is carried within an IS-IS CAPABILITY 
   TLV defined in [IS-IS-CAP]. As such, elements of procedure are 
   inherited from those defined in [IS-IS-CAP]. 
 
   The TE Node Capability Descriptor sub-TLV advertises capabilities 
   that may be taken into account as constraints during path selection. 
   Hence its flooding is area-local, and MUST be carried within an IS-IS 
   CAPABILITY TLV having the S flag cleared.  
 
   An IS-IS router MUST originate a new IS-IS LSP whenever the content  
   of any of the TE Node Capability sub-TLV changes or whenever required 
   by the regular IS-IS procedure (LSP refresh).  
    
   The TE Node Capability Descriptor sub-TLV is OPTIONAL and MUST NOT 
   appear more than once in an ISIS Router Capability TLV.  
    
   When an IS-IS LSP does not contain any TE Node capability Descriptor 
   sub-TLV, this means that the TE Capabilities of that LSR are unknown.  
    
   Note that a change in any of these capabilities MAY trigger CSPF    
   computation, but MUST NOT trigger normal SPF computation. 
 
   Note also that TE node capabilities are expected to be fairly static.    
   They may change as the result of configuration change, or software  
   upgrade. This is expected not to appear more than once a day. 
 
                  
6. Backward compatibility 
    
   The TE Node Capability Descriptor TLVs defined in this document do 
   not introduce any interoperability issue. For OSPF, a router not 
   supporting the TE Node Capability Descriptor TLV will just silently 
   ignore the TLV as specified in [OSPF-CAP]. For IS-IS a router not 
   supporting the TE Node Capability Descriptor sub-TLV will just 
   silently ignore the sub-TLV as specified in [IS-IS-CAP]. 
    
   When the TE Node capability Descriptor TLV is absent, this means that 
   the TE Capabilities of that LSR are unknown.  
    
   The absence of a word of capability flags in OSPF or an octet of 
   capability flags in IS-IS means that these capabilities are unknown.  
    
    
    
    
 
 
 
 

 
Vasseur, Le Roux, et al.                                      [Page 8] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


7. Security Considerations 
 
   This document specifies the content of the TE Node Capability 
   Descriptor TLV in ISIS and OSPF, to be used for (G)MPLS-TE path 
   computation. As this TLV is not used for SPF computation or normal 
   routing, the extensions specified here have no direct effect on IP 
   routing. Tampering with this TLV may have an effect on Traffic 
   Engineering computation. Mechanisms defined to secure ISIS Link State 
   PDUs [RFC3567], OSPF LSAs [RFC2154], and their TLVs, can be used to 
   secure this TLV as well. 
 
8. IANA considerations  
 
8.1. OSPF TLV 
 
   IANA is in charge of the assignment of TLV code points for the Router 
   Information LSA defined in [OSPF-CAP]. 
   IANA will assign a new codepoint for the TE Node Capability 
   Descriptor TLV defined in this document and carried within the Router 
   Information LSA (suggested value = 1).  
    
8.2. ISIS sub-TLV 
    
   IANA is in charge of the assignment of sub-TLV code points for the 
   ISIS CAPABILITY TLV defined in [ISIS-CAP]. 
   IANA will assign a new codepoint for the TE Node Capability 
   Descriptor sub-TLV defined in this document, and carried within the 
   ISIS CAPABILITY TLV (suggested value = 1). 
    
8.3. Capability Registry 
    
   IANA is requested to manage the space of capability bit flags carried 
   within the OSPF and ISIS TE Node Capability Descriptor, numbering 
   them in the usual IETF notation starting at zero, with the most 
   significant bit as bit zero. A single registry must be defined for 
   both protocols.  
   New bit numbers may be allocated only by an IETF Consensus action. 
   Each bit should be tracked with the following qualities: 
      - Bit number 
      - Defining RFC 
      - Name of bit 
       
   Five TE node capabilities are defined in this document and must be 
   assigned by IANA. Here are the suggested values: 
      1 : B Bit = P2MP Branch LSR capability ([RFC4461]) 
      2 : E bit = P2MP Bud LSR capability ([RFC4461]) 
      3 : M bit = MPLS-TE support ([RFC3209]) 
      4 : G bit = GMPLS support (RFC3473)) 
      5 : P bit = P2MP RSVP-TE support ([RSVP-P2MP]) 
 
    

 
Vasseur, Le Roux, et al.                                      [Page 9] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


9. Acknowledgments 
 
   We would like to thank Benoit Fondeviole, Adrian Farrel, Dimitri 
   Papadimitriou, Acee Lindem and David Ward for their useful comments 
   and suggestions. 
 
   We would also like to thank authors of [RFC4420] and [OSPF-CAP] from 
   which some text of this document has been inspired. 
    
    
10. References 
 
10.1. Normative references 
 
   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 
   Requirement Levels", BCP 14, RFC 2119, March 1997. 
 
   [RFC2328] Moy, J., "OSPF Version 2", RFC 2328, April 1998. 
    
   [RFC2740] Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6", 
   RFC 2740, December 1999. 
 
   [RFC2370] Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, 
   July 1998. 
    
   [RFC4461] Yasukawa, S., et. al., "Signaling Requirements for Point to 
   Multipoint Traffic Engineered MPLS LSPs", RFC4461, April 2006. 
 
   [IS-IS] "Intermediate System to Intermediate System Intra-Domain 
   Routing Exchange Protocol " ISO 10589. 
     
   [RFC3630] Katz, D., Yeung, D., Kompella, K., "Traffic Engineering 
   Extensions to OSPF Version 2", RFC 3630, September 2003. 
    
   [RFC3784] Li, T., Smit, H., "IS-IS extensions for Traffic 
   Engineering", RFC 3784, June 2004. 
    
   [OSPF-CAP] Lindem, A., Shen, N., Aggarwal, R., Shaffer, S., Vasseur, 
   J.P., "Extensions to OSPF for advertising Optional Router 
   Capabilities", draft-ietf-ospf-cap, work in progress. 
 
   [IS-IS-CAP] Vasseur, J.P. et al., "IS-IS extensions for advertising 
   router information", draft-ietf-isis-caps, work in progress. 
    
   [RFC3567] Li, T. and R. Atkinson, "Intermediate System to 
   Intermediate System (IS-IS) Cryptographic Authentication", RFC 3567, 
   July 2003. 
    
   [RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with 
   Digital Signatures", RFC 2154, June 1997. 
    

 
Vasseur, Le Roux, et al.                                     [Page 10] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


   [RFC3209] Awduche, D., et. al., "RSVP-TE: Extensions to RSVP for LSP 
   tunnels", RFC 3209, December 2001. 
    
   [RFC3473] Berger, L, et. al., "GMPLS Signaling RSVP-TE extensions", 
   RFC 3473, January 2003. 
 
   [RSVP-P2MP] Aggarwal, Papadimitriou, Yasukawa, et. al. "Extensions to  
   RSVP-TE for point-to-multipoint TE LSPs", draft-ietf-mpls-rsvp-te-
   p2mp, work in progress. 
 
10.2. Informative References 
    
   [RFC4203] Kompella, K., Rekhter, Y., "OSPF extensions in support of 
   Generalized Multi-protocol Label Switching", RFC4203, October 2005. 
     
   [RFC4205] Kompella, K., Rekhter, Y., "IS-IS extensions in support of 
   Generalized Multi-protocol Label Switching", RFC4205, October 2005. 
 
   [RFC4420] Farrel, A., and al., "Encoding of attributes for MPLS LSPs 
   establishment Using RSVP-TE", RFC4420, February 2006.  
 
 
11. Editors' Addresses   
 
   Jean-Philippe Vasseur  
   Cisco Systems, Inc.  
   1414 Massachusetts Avenue  
   Boxborough , MA - 01719  
   USA  
   Email: jpv@cisco.com  
 
   Jean-Louis Le Roux  
   France Telecom  
   2, avenue Pierre-Marzin  
   22307 Lannion Cedex  
   FRANCE 
   Email: jeanlouis.leroux@orange-ftgroup.com 
 
12. Contributors' Addresses 
 
   Seisho Yasukawa 
   NTT 
   3-9-11 Midori-cho, 
   Musashino-shi, Tokyo 180-8585, Japan 
   Email: s.yasukawa@hco.ntt.co.jp 
 
   Stefano Previdi 
   Cisco Systems, Inc 
   Via Del Serafico 200 
   Roma,   00142 
   Italy 
   Email: sprevidi@cisco.com 
 
Vasseur, Le Roux, et al.                                     [Page 11] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


 
   Peter Psenak 
   Cisco Systems, Inc 
   Pegasus Park DE Kleetlaan 6A 
   Diegmen,   1831 
   BELGIUM 
   Email: ppsenak@cisco.com 
    
   Paul Mabbey 
   Comcast 
   USA 
    
 
13. Intellectual Property Statement 
 
   The IETF takes no position regarding the validity or scope of any 
   Intellectual Property Rights or other rights that might be claimed to 
   pertain to the implementation or use of the technology described in 
   this document or the extent to which any license under such rights 
   might or might not be available; nor does it represent that it has 
   made any independent effort to identify any such rights.  Information 
   on the procedures with respect to rights in RFC documents can be 
   found in BCP 78 and BCP 79. 
    
   Copies of IPR disclosures made to the IETF Secretariat and any 
   assurances of licenses to be made available, or the result of an 
   attempt made to obtain a general license or permission for the use of 
   such proprietary rights by implementers or users of this 
   specification can be obtained from the IETF on-line IPR repository at 
   http://www.ietf.org/ipr. 
    
   The IETF invites any interested party to bring to its attention any 
   copyrights, patents or patent applications, or other proprietary 
   rights that may cover technology that may be required to implement 
   this standard.  Please address the information to the IETF at  
   ietf-ipr@ietf.org. 
    
   Disclaimer of Validity 
    
   This document and the information contained herein are provided 
   on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE  
   IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 
   WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
   WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 
   ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 
   FOR A PARTICULAR PURPOSE. 
    
    
    
    
    
 
Vasseur, Le Roux, et al.                                     [Page 12] 
  
Internet Draft   draft-ietf-ccamp-te-node-cap-04.txt    December 2006 


   Copyright Statement 
    
   Copyright (C) The IETF Trust (2006). This document is subject to the 
   rights, licenses and restrictions contained in BCP 78, and except as 
   set forth therein, the authors retain all their rights. 
    














































 
Vasseur, Le Roux, et al.                                     [Page 13]