
Antykwa Półtawskiego: a parameterized outline font 117

Antykwa Półtawskiego: a parameterized outline
font

Bogusław Jackowski, Janusz M. Nowacki, Piotr Strzelczyk

No doubt, METAFONT is a powerful programming language, well-suited for
designing fonts, in many respects much better than popular WYSIWYG pro-
grams (precision, possibility of complex constructions, etc.); and, no doubt,
there are thousands of fonts used all over the world, only a negligible fraction
of them being designed using METAFONT.

Computer Modern inheritance

The final exhortation of The METAFONTbook ([1]): “GO FORTH now and create
masterpieces of digital typography!” suggests that Donald E. Knuth, when he de-
signed METAFONT, presumed that his idea of parameterized fonts would find
many followers. Unfortunately, his expectations failed. Why? The reasons are
manifold.

One of the most important aspects is perhaps the exceptional programming
talent of Knuth—his style is not so easy to follow. The family of Computer
Modern fonts is very intricate: more than hundred files containing nearly a
megabyte of METAFONT code. They are rather complex—Knuth modestly ad-
mits in The METAFONTbook.

The question arises whether the complexity of the Computer Modern family
reflects the nature of the problem (i. e., type design) or rather Knuth’s personal
traits. We would incline to the latter opinion. A herd of 62 parameters may
raise doubts, the more so as they control not only dimensions and slanting,
but even the presence of serifs. Questionable also is Knuth’s design decision
to keep the continuous change of the proportions of glyphs along with the
change of font size—it perceivably deteriorates the quality of glyphs in smaller
fonts (5–7 pt).

Knuth was apparently aware of weak points of the Computer Modern design.
In The METAFONTbook he admits: they [the Computer Modern typefaces] were
developed rather hastily by the author of the system, who is a rank amateur at such
things.

Parameterization was certainly a great idea, but it seems that Knuth went too
far in exploiting it.

EuroTEX´99 Proceedings

118 Antykwa Półtawskiego: a parameterized outline font

Bitmaps versus outlines

Most harmful to the potential success of METAFONT as a tool for type de-
signers was perhaps Knuth’s adherence to the bitmap representation of fonts.
Although in METAFONT all graphic objects are represented by outlines (Bézier
curves), METAFONT’s primary task is to generate bitmaps. Therefore the out-
line representation of glyphs was unimportant for Knuth.

For example, the letter ‘S’ of cmr10 consists of five pieces filled and, worse still,
stroked with a circular pen (figure 1). Many tricks of this kind can be found
among the Computer Modern programs: stroking with various pens, erasing
(dish serifs), copying bitmaps (German double ‘S’ in cmcsc10), etc.

Figure 1: The construction of the letter ‘S’ of cmr10: five separate elements are stroked
with a pen and filled.

Such an approach is satisfactory as long as the resulting bitmap is the main
concern. The fact is that TEX bitmap fonts have not become a worldwide stan-
dard. Instead, outline font formats, Type 1 (PostScript) and TrueType (Win-
dows; its PostScript equivalent is known as Type 42), have won the competi-
tion.

The problem is that there does not exist a simple method of conversion of
METAFONT bitmap-oriented programs into a purely outlined form. Some
preliminary results (by Andreı̆ Slepukhin, [2]) show that it could be devised
specifically for the Computer Modern family, but:

1. the reasonableness of such an effort is doubtful;

2. the converter can be neither efficient nor reliable.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 119

Richard J. Kinch, a staunch devotee of outlines ([4], p. 134) developed an in-
teresting tool for an interactive conversion of Computer Modern fonts to an
outline form, MetaFog ([3]). Recently, several fonts were prepared by Taco
Hoekwater ([5]) using this technology.

In spite of the successes of Kinch’s approach, it looks as if re-writing the Com-
puter Modern programs from scratch were more advisable. Still better would
be to have a macro package facilitating the creation of outline fonts. But is
METAFONT the most adequate tool for such a purpose?

METAFONT versus METAPOST

In 1989, five years after the first release of METAFONT
1, METAPOST ([6]) came

to this world. The originator was John D. Hobby, who designed many of the
elegant algorithms employed in METAFONT. Hobby realised that METAFONT

is an excellent tool for designing graphics, not only fonts, and that bitmap
output is a severe limitation. His idea was to use the METAFONT language to
create PostScript output. He did not consider, however, making a tool for gen-
erating PostScript fonts. Fortunately, his adaptation was sufficiently general
to admit font applications as well.

Again, a question arises: does it make sense to force METAPOST to do things
for which it was never intended? The answer is equivocal.

There are some interesting features present in METAFONT and absent from
METAPOST, and vice versa. For example, the measuring of arc length is absent
from METAFONT and present in METAPOST, whereas METAFONT, but not
METAPOST, is capable of measuring the area surrounded by a cyclic path.

From the point of view of the generation of outline fonts, both programs need
postprocessing: with METAFONT one has to analyse either a generic font file
or a log file; with METAPOST the resulting eps files are to be processed.

It is intuition that remains in such ambiguous situations—it told us: META-
POST.
1 Actually, the first version of METAFONT appeared in 1979. Having gathered experience, Knuth

released a new version of METAFONT in 1984, re-written from scratch and incompatible with
the predecessor. In the source of METAFONT, mf.web, the history of METAFONT starts with
the statement: Version 0 was completed on July 28, 1984.

EuroTEX´99 Proceedings

120 Antykwa Półtawskiego: a parameterized outline font

Antykwa Półtawskiego

The best method of the verification of intuition is to deal with a real-life case.
None of the authors is a professional type designer, so we could not even
dream about designing a font ab ovo. Fortunately, there exists an elegant type-
face, designed in the ’twenties by a Polish typographer, Adam Półtawski (fig-
ure 2). It was a tempting challenge to test our intuition against Półtawski’s
typeface.

Figure 2: Antykwa Półtawskiego: letters and digits (lead print).

In the sequel we shall use the Polish name “Antykwa Półtawskiego” instead
of the English translation “Półtawski’s Antique”, as the word “antique”—
according to the Collins dictionary—means: a family of typefaces having all lines
of nearly equal thickness. This is not true with Półtawski’s design. As you can
see, it resembles rather neoclassical (also called modern) typefaces.

At first glance, Antykwa Półtawskiego looks very regularly, almost austere.
A close inspection, however, reveals many surprising details (figure 3).

Studying the imprints of Antykwa Półtawskiego, we found ourselves in the
position of the explorers of pyramids: we had to conjecture the rules governing
shapes and proportions from faint evidence (or even none). Our situation
would improve if we had access to the original Półtawski templates. So far,
we have not managed to track them down, but there remains a spark of hope
that they exist somewhere.

The bright side of this otherwise confusing situation is that it compels us to
looking for a general and flexible approach. Otherwise, we could easily get
lost among the peculiarities of Antykwa Półtawskiego.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 121

Figure 3: Antykwa Półtawskiego: characteristic details and features. Observe polygo-
nal dots, unconventional letters ‘g’, ‘y’ and ‘w’, and queer right-angled hooks in ‘j’ and
‘f’. Note also the neatly stroked ribbon-shaped diacritical elements of the Polish ‘l’ and
‘L’—certainly, they cannot be called “slashes”.

What we actually expect to obtain is a family of typefaces (not as broad as
Computer Modern) resembling Antykwa Półtawskiego. If we have luck, one
member of the family may happen to replicate nicely the original Antykwa
Półtawskiego design, but it is not crucial. Much more important is the possi-
bility of generating font variations on the fly.

A glance at outline paradigms

A compendious survey of technical aspects concerning outline fonts can be
found in the Adobe manual concerning Type 1 fonts ([7]); we summarize here
only the most important and general (PostScript-independent) ones.

Direction of paths

In Type 1 fonts, paths to be filled and to be unfilled have different orientation:
the former—anticlockwise, the latter—clockwise (figure 4A). We decided to
follow this convention, although neither METAFONT nor METAPOST requires
it.

Overlapping paths

Overlapping paths should be banished forever from outline fonts. It should be
noted, however, that many font vendors, including the celebrated Microsoft,
distribute fonts that do not follow this fundamental rule (figure 4B), which
may cause unwanted effects. Therefore the operation of joining two outlines

EuroTEX´99 Proceedings

122 Antykwa Półtawskiego: a parameterized outline font

Figure 4: Common faults of outline design and avoiding them; the letter ‘Aogonek’ in
the top line comes from the standard set of Windows fonts (Arial CE Bold).

should belong to the set of basic tools for generating outline fonts (cf. sec-
tion Removing overlaps below).

Conciseness

The outline of a glyph should contain as few segments as possible (figure 4C).
For example, consecutive co-linear segments should be replaced by a single
one. Users of METAFONT and METAPOST should be aware of the problem
of “tiny segments”: joining two paths obtained by an intersection operation
(intersectionpoint or interseciontimes) may lead to nearly coincident
and thus superfluous nodes. It is an admittedly subtle problem, yet important
from the point of view of the construction of tidy outlines (cf. section Joining
paths below).

Points at extremes

The number of segments should not be too small either. Putting nodes at ex-
tremes helps rasterizers to transform glyphs accurately. In particular, reposi-
tioning nodes in a slanted font may prove beneficial (figure 4D). This implies

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 123

that a single segment of a Bézier curve should not turn by more than 90 de-
grees. The points of inflection should also be avoided.

A glance at tools for assembling outlines

The set of tools for generating outlines should facilitate complying with the
rules summarized in the previous section. We describe here a few represen-
tative tools we implemented. Hopefully, it should suffice to convey the most
important issues.

Joining paths

The simplest tool is perhaps an operator for joining paths that have ends
nearly coincident:

def && = amp_amp_ whatever enddef; % a common postfix-notation trick
%
tertiarydef p amp_amp_ q = % |length(p)>0|
(subpath(0,length(p)-1) of p) ..
controls (postcontrol length(p)-1 of p)
and (precontrol length(p) of p) ..

enddef;

You use this operator like a normal ampersand, e. g.:

p && q && cycle

The only difference is that if the edge nodes do not exactly coincide, you must
not use a single ampersand; double ampersand works in both cases: it simply
removes the former of two nodes. (Note that if nodes are actually distant, you
may obtain weird results.)

In the METAFONT sources of Computer Modern, tiny segments appear reg-
ularly whenever two paths intersect, for example in the arrows of cmsy10
(figure 5). Such segments are harmless from the point of view of generating
bitmaps. They can, however, cause quite a lot of commotion from the point of
view of outline construction: the path shown in figure 5 yields strange values
of the turningnumber function, depending on the actual resolution: −1 for a
laser printer mode (300 dpi), and −3 for a phototypesetter mode (1270 dpi).

It is numerical instability that is responsible for the singular behaviour of
METAFONT and METAPOST. Tiny segments may form loops having an im-
pact on the result of the turningnumber operation; thus, the important char-

EuroTEX´99 Proceedings

124 Antykwa Półtawskiego: a parameterized outline font

0

12

345

6 7 8

9 10

Figure 5: The rightward arrow from cmsy10. The outline of the arrow contains two
pairs of nearly coinciding nodes: 3, 4 and 7, 8. Their coordinates for a Linotronic
mode, 1270 dpi, read: (150.4547, 42.00003), (150.4547, 41.99976), (150.4547, 46.00024),
and (150.4547, 45.99997), respectively, which causes a strange turning number of the
path (equal to −3).

acteristic of a path, its turning number, is not reliable if paths are constructed
incautiously.

Tangency is another feature of geometric objects that leads to numerical insta-
bility. For example, the turning number for a path defined as

(0,0)--(0,-1){up}..(1,1)--cycle

is 0, whereas the value becomes 1 after reversing the path. The reason behind
this somewhat-amazing result is that the path turns by 180 degrees at the node
(0,−1), i. e., the path is locally self-tangent.

In general, the problems caused by numerical instability cannot be solved au-
tomatically: only a careful control over the details of the construction of a path
may help to overcome the unwanted consequences of the instability. This
is exactly the reason why a universal, efficient and reliable converter from a
bitmap-oriented METAFONT program into a tidy outline form is hardly imag-
inable (cf. section Bitmaps versus outlines above).

A problem in elementary geometry

Elementary geometry prompts constructions that prove useful in computer
type design. An example of such a construction is the computation of a side
of a right-angled triangle, given its hypotenuse (c) and the length of one of its
sides (b):

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 125

tertiarydef c leg b = % |pair c; numeric b;|
begingroup
save a; pair a;
% |(length(c)+-+b)=length(a)|
c=a+b/(length(c)+-+b)*(a rotated -90);
a

endgroup
enddef;

The following example illustrates the application of the macro side: given the
height h and width w of a rectangle, construct a band (parallelogram) of the
width b inscribed in the rectangle (figure 6A).

b

w

h

A

|c|
= √

w 2
+

h 2
= √
|a| 2

+
b 2

b

a
B

0

12

3

C

Figure 6: Inscribing a band (a parallelogram) in a given rectangle: a typical example of
construction of a leg of a right-angled triangle; more explanations in the text.

The construction with a ruler-and-compasses method is elementary (figure 6B):

1. draw the rectangle in question (let’s call its diagonal c);

2. draw in one of the corners of the rectangle (say lower-right—node 0 in
figure 6C) a circle of radius b;

3. draw the leg a, i. e., a straight line tangential to the circle and passing
through the opposite end of the diagonal (node 2).

EuroTEX´99 Proceedings

126 Antykwa Półtawskiego: a parameterized outline font

The crossing point of the side and the base of the rectangle is one of the two
remaining corners of the parallelogram (node 3); the other remaining corner
(node 1) can be found similarly.

This construction can be translated to METAPOST as follows:

z0=(w,0); z2=(0,h);
z1=z0+whatever*(z2-z0 leg -b); y1=y2; % this fixes the node 1
z1-z2=z0-z3; % this fixes the node 3 by symmetry

The clue is the expression z0+whatever*(z2-z0 side -b) which can be in-
terpreted as “somewhere on a straight line covering the side a”.

Slanting: another problem in elementary geometry

Slanting (in the art of type design) is not as simple an operation as it may
look at first glance. We already noted that slanting necessitates adding points
at extremes (figure 4D). Furthermore, slanting should not affect the width of
stems (see figure 7A).

b b

slant=0.35

A

b
b

slant=0.35

B

Figure 7: A capital lambda from an imaginary grotesque font: slanting (exaggerated
here) usually affects the width of stems (A), but this effect can (and should) be neutral-
ized (B).

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 127

Assume that the stem slope is given by a vector d and that its resulting breadth
after slanting by a slant s should be b; the initial breadth of the stem (i. e., prior
to slanting), b′, is given by the following formula, in the sequel referred to as
the “slant correction formula”:

b’=b*length(unitvector(d) slanted s)

The result of taking this correction into account is displayed in figure 7B.

An advanced problem in elementary geometry

Consider now a “mixture” of two previously demonstrated problems: assume
that we want to inscribe a band into a given rectangle in such a way that after
slanting by a given slant it will have the width b. Neither the macro ‘side’ nor
the formula for the correction of a stem width can be applied explicitly, as both
initial and final slopes depend on each other.

The solution is an iterative algorithm:

1. use the macro ‘side’ to find the band of the width b for the non-slanted
case;

2. find the corrected stem width b′ using the slant correction formula;

3. set b← b′ and repeat the steps (1)–(3) until the process converges (in prac-
tice 3–4 steps suffice).

The code is here, in case you’re curious:

primarydef c /\ b =
% A variant of the |side| procedure that iteratively counteracts
% a slant deformation; given: |slant|: a slant (global),
% |c|: the hypotenuse (vector) of a right-angled triangle,
% |b|: the length of one of its sides; result: the other side
% of the triangle (vector).
if slant=0: (c side b) else:
begingroup save b_,b__, n; b_:=b__:=b; n:=10;
forever:
b_:=b*length(unitvector(c side b_) slanted slant);
exitif (abs(b_-b__)<.01) or (n<=0);
b__:=b_; n:=n-1;

endfor
if (abs(b_-b__)>=.01):
errmessage "Iteration hasn’t converged"; fi

c side b_
endgroup

fi
enddef;

EuroTEX´99 Proceedings

128 Antykwa Półtawskiego: a parameterized outline font

Examples of the use of this macro can be found in many places in the sources
of Antykwa Półtawskiego.

Removing overlaps

As the last general-purpose tool, we consider the operation of “welding” out-
lines, also known as “removing overlaps”. Most WYSIWYG graphic programs
are equipped with such an option. Surprisingly enough, this operation is miss-
ing from the set of standard tools for METAFONT/METAPOST.

The set of macros implementing the relevant outline operations, ROEX ([8, 9,
10]), has never become popular (we know about a few people using it) which
is understandable, considering the size of the code (70 kB) and the relatively
low efficiency and robustness of the employed algorithms.

It should be emphasized, however, that algorithms accomplishing operations
of this kind cannot be fully reliable because of the above-mentioned numerical
instability problems (cf. section Joining paths above). Nonetheless, when used
in a disciplined way, they prove to be extraordinarily useful: the source code
is compact and comprehensible. Therefore, for the purposes of work on An-
tykwa Półtawskiego, we devised a simplified version (4 kB) of the algorithm
accomplishing set-theoretic operations (figure 8).

A B

C D

Figure 8: Rudimentary set-theoretic operations on outlines: union (A), subtraction
(C, D), and intersection (D); the operations are accomplished by a single macro, de-
pending on the orientation of paths: anticlockwise paths are marked with a solid line,
clockwise with a dashed line.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 129

The relevant macro takes two cyclic path as arguments, intersects them
and assembles the result according to the orientation of the input paths:
if both paths are anticlockwise, the result is the union of the two paths, if
both are clockwise—the result is the intersection, otherwise the clockwise path
is subtracted from the anticlockwise one. In fonts, the first situation occurs
most frequently (‘x’ or ‘lslash’), but sometimes, due to the paradigm of having
two input paths only, other operations can also be necessary (‘oslash’).

Specific tools for Antykwa Półtawskiego

So far, we have demonstrated a set of basic tools expediting the work on type
shapes. Obviously, each font has its own peculiar yet regular features, having
an impact on the font appearance as a whole. The glyph programs should
reflect all regularities of the font.

A “building blocks” paradigm

Our general aim was to create a set of “building blocks”—macros returning
paths rather than a set of relations (dependencies) such as, e. g., the plain
macro penpos returns—and a set of operators for handling the paths. The
glyphs are assembled from the “building blocks” with the help of the opera-
tors.

Let’s look into the code of the letter ‘H’ (the numbering of lines, of course,
does not belong to the code):

1. beginglyph(H);
2. save serif_tl, serif_bl, serif_tr, serif_br; % local
3. path serif_tl, serif_bl, serif_tr, serif_br; path letter_H;
4. % fix serifs:
5. sym_serif4’((wd.H,0), down, uc_stem, uc_serif_jut)(serif_br);
6. sym_serif3’((wd.H,uc_height), up, uc_stem, uc_serif_jut)(serif_tr);
7. sym_serif4’((0,uc_height), up, uc_stem, uc_serif_jut)(serif_tl);
8. sym_serif3’((0,0), down, uc_stem, uc_serif_jut)(serif_bl);
9. % fix bar:

10. x1=x4=serif_tl.first.x; x2=x3=serif_br.first.x;
11. y1=y2=1/2uc_height; y4=y3=y2+thin_stem;
12. % assemble glyph:
13. letter_H = (serif_br--serif_tr--z3--z4--serif_tl--serif_bl--
14. z1--z2--cycle) start.default;
15. Fill letter_H;
16. % final touch:
17. fix_hstem(thin_stem)(letter_H);
18. fix_vstem(uc_stem)(letter_H);
19. fix_hsbw(wd.H,marg,marg);
20. endglyph;

EuroTEX´99 Proceedings

130 Antykwa Półtawskiego: a parameterized outline font

se
ri
f
br

se
ri
f
bl

se
ri
f
tr

se
ri
f
tl

Figure 9: The letter ‘H’ from Antykwa Półtawskiego; the construction of letterforms is
based on assembling “building blocks”, in this case serifs (marked with solid lines); tri-
angles denote the starting points of the serifs, the origin of the whole outline is marked
with a circle; arrows show so-called hints.

The resulting letterform is displayed in figure 9.

As you can see, there are several parameters involved in the code: wd.H (lines 5,
6, and 19), uc_stem (lines 5–8, and 18), uc_serif_jut (lines 5–8), uc_height
(lines 6, 7 and 11), thin_stem (lines 11 and 17), and marg (line 9). Their mean-
ing is supposed to be self-explanatory.

The macro sym_serif (lines 5–8) constructs a serif based on a small number
of parameters: the position of a chosen construction point and direction and
the sizes of a stem and jut. The result (an open path) is assigned to the last
parameter (suffix). The number of the chosen construction node is passed as
an optional suffix parameter (see figure 10 and section Serifs below); in this
example, the positions of nodes 3’ and 4’ (lines 6, 8 and 5, 7, respectively) are
being fixed.

Such a scheme of defining “building blocks” and assembling outlines out of
them has proved very convenient. There are several macros in the Antykwa
Półtawskiego package defined in this way. Note, however, that the bar of the
letter ‘H’ is constructed explicitly (lines 10 and 11). It should be emphasized

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 131

that it is not at all obvious which elements of a font should be classified as
“building blocks” and which not (cf. section Unique features below).

Postfix notation also proved to be handy in use in some cases. There are
two examples of postfix operators in the quoted code: first.x (line 10) and
start.default (line 14). The former operator returns the x-coordinate of the
last node of the argument path (serif_tl); the latter operator shifts cyclically
the numbering of nodes in such a way that the rightmost lower point of the
argument path becomes the first point of the resulting path. We will not dwell
too much on this subject, as postfix notation should be regarded as “syntactic
sugar” rather than as an important programming technique.

The final portion of the code of the letter ‘H’ contains three lines that deserve
attention:

◦ Lines 17–18 specify the information about vertical and horizontal lines
(stems) which have thickness to be kept uniform throughout the whole
font. This information is used by PostScript interpreters for improving the
process of conversion of outlines into pixels. The relevant PostScript oper-
ators controlling the process of conversion are called hints. Some programs
detect hints “automagically” by finding heuristically all feasible distances.
We decided that distances could be supplied explicitly without trouble,
and thus only the location of hints remains to be found by a heuristic algo-
rithm.

◦ Line 19 shifts the resulting glyph appropriately in the field of the character,
adding left and right side bars (margins; both equal to marg in this case).
This procedure can be regarded as a simplified version of the adjust_fit
macro of the Computer Modern programs.

Serifs

The shape of serifs is the feature of fonts acknowledged as most characteristic.
The shapes of serifs of Antykwa Półtawskiego noticeably differ from those of
Computer Modern ones; the manner in which the serifs are defined and used
is also different.
Let’s have a look into the code of the sym_serif macro, the heart of the pro-
gram for the letter ‘H’. Actually, it is an instance of a macro defining a serif
with non-identical left and right juts, asym_serif:

EuroTEX´99 Proceedings

132 Antykwa Półtawskiego: a parameterized outline font

1. vardef sym_serif@#(expr start, in_dir, stem, jut)(suffix result) =
2. asym_serif@#(start, in_dir, stem, jut, jut)(result);
3. enddef;
4.
5. vardef asym_serif@#(expr start, in_dir, stem, l_jut, r_jut)
6. (suffix result) =
7. % |@#| -- if not empty, defines which point of a serif
8. % is to be placed at |start|; otherwise |z.basic| is meant
9. clearxy; save v_; path result; numeric result.ht, result.wd;

10. v_=signum(ypart(in_dir));
11. if (str @# =""): z.basic else: z@# fi=start;
12. % fix central part:
13. x1-x1’=x6’-x6=v_*spread_wd;
14. x2-x1=if v_>0: r_jut else: -l_jut fi;
15. x6-x5=if v_>0: l_jut else: -r_jut fi;
16. x2-x3=x5-x4=v_*serif_slab*slant; % the correction of slanted serifs
17. y.basic’=y0=y7=y2-v_*spread_ht;
18. y2=y1=y1’=y5=y6=y6’=y.basic-v_*serif_slab; y3=y4=y.basic;
19. % fix ending points:
20. z.basic^in_dir=z.basic’;
21. z0^in_dir=z1’^in_dir=
22. (z.basic’+1/2stem*stem_corr(in_dir)*unitvector(in_dir rotated -90));
23. z7^in_dir=z6’^in_dir=
24. (z.basic’+1/2stem*stem_corr(in_dir)*unitvector(in_dir rotated 90));
25. % define ‘‘hook’’ (alignment) points:
26. z3’=(x2,y3); z4’=(x5,y4); % for |slant=0|, |z3=z3’| and |z4=z4’|
27. % complete the construction:
28. result:=z0{in_dir}..z1--z2--z3--z4--z5--z6..{-in_dir}z7;
29. result.wd:=v_*(x3-x4); result.ht:=v_*(y3-y0);
30. enddef;

Although the code looks entangled at first glance, it becomes elementary when
illustrated (figure 10). Still, it is worthwhile to supply a few words of explana-
tion.

1 1’
33’ 44’

66’

0

2 5

7basic’

basic

s

w

h

1 1’
33’ 44’

66’

0

2 5

7basic’

basic

slanted by 15 degree

Figure 10: The construction of the serif of Antykwa Półtawskiego; the distances s, w,
and h correspond to the global parameters serif_slab, spread_wd, and spread_ht,
respectively. Observe the vertical edges of the serif after slanting.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 133

◦ Line 11: the optional suffix parameter @# determines the position of a par-
ticular construction point: an empty suffix refers implicitly to z.basic;
otherwise it is a suffix of any point used in the construction of a serif. Note
that all construction points are used locally (clearxy in line 9).

◦ Lines 13 and 16–18: the global parameters used in the macro, namely,
spread_wd, spread_ht, serif_slab and slant, are common to the upper-
and lowercase letters, therefore they do not appear among arguments of
the macro.

◦ Line 16: this line reflects a somewhat uncommon design decision—we as-
sumed that the sides of the serifs should be vertical after slanting, hence an
appropriate correction to the position of nodes 3 and 4 is computed. For
this reason, nodes 3′ and 4′ should be used for vertical alignment prior to
slanting.

◦ Lines 20, 21, and 22: the binary operation aˆb, defined as a+whatever*b, is
used in the Antykwa Półtawskiego programs instead of the phrase what-
ever[a,b]; the latter form can be used if both a and b are known, while
the former requires only that the value of b is known.

◦ Lines 22 and 24: the stem_corr operation computes the slant correction
formula for a given slope (in_dir in this case; cf. section Slanting: another
problem in elementary geometry above).

There exists a variant of a serif used in lowercase letters (see figure 11). It is
constructed and used in a very similar way to the serif just described, therefore
we will skip the code.

Lobes

Lobes occurring in the lowercase letters ‘b’, ‘d’, ‘p’, and ‘q’ are essential for
the appearance of Antykwa Półtawskiego. In particular, it is important that
they are similar, although not necessarily identical: ‘b’ and ‘d’ have (probably)
different lobes from that of ‘p’ and ‘q’ (figure 11).

The definition of lobes complies with the scheme that the programs for the
construction of serifs manifest. In particular, the header of the macro lc_lobes
resembles that of asym_serif:

vardef lc_lobes@#(expr start, width, height, raise, drop)(suffix result)

EuroTEX´99 Proceedings

134 Antykwa Półtawskiego: a parameterized outline font

Figure 11: The construction of the lobes of Antykwa Półtawskiego (marked with a solid
line). Observe a slight difference of the lobes in ‘b’ and ‘d’ as compared to the lobes in
‘p’ and ‘q’ (the drop of the upper part). The job is done by the macro lc_lobes which
calculates both inner and outer edge appropriately oriented.

There are more kinds of lobes (letters: ‘j’, ‘J’, ‘m’, ‘n’, ‘u’, ‘U’, etc.), but all of
them can be defined using the same paradigm, which unifies and thus facili-
tates the task of assembling glyphs.

Unique features

Like the majority of fonts, Antykwa Półtawskiego contains many character-
istic details (such as the shape of the bottom part of the letter ‘g’—figure 3)
appearing in only one glyph. Sometimes it is natural to consider them as an
intrinsic part of the program for a given glyph, and sometimes it is reason-
able to parameterize such local features by defining macros or constants for a
single use.

Working on Computer Modern, Knuth apparently faced the same problem.
Dozens of coefficients evidently introduced ad hoc can be encountered in the
Computer Modern programs. For example, the program for the roman let-
ter ‘a’ contains several “magic” numbers (the most striking ones are under-
lined):

...
if serifs: pos1(flare,180); pos2(hair,180);
pos3(vair,90); lft x1r=hround max(u,2.1u-.5flare); x3=.5w-.5u;
y1=min(bh+.5flare+2vair+2,.9[bh,h]-.5flare);
bulb(3,2,1); % bulb

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 135

else: pos1(5/7[vair,flare],95); x1l=good.x 1.5u; x1r:=good.x x1r;
pos3(1/8[vair,thin_join],90);
x3=.5w-.2u; top y1r=vround .82[bh,top y3r];
filldraw stroke term.e(3,1,left,.9,4); fi % terminal
pos4(stem,0); rt x4r=hround(w-2.5u+.5stem); y4=1/3[bh,h];
pos5(stem,0); x5=x4; y5=max(.55bh,2vair);
...

Documenting Antykwa Półtawskiego

Knuth apparently did not think about literate programming in METAFONT (al-
though METAFONT itself is written in WEB), therefore there are neither tangle
nor weave equivalents for the METAFONT language. Knuth equipped, how-
ever, the METAFONT system with a simple formatting program, MFT, that
converts a METAFONT source into a formatted TEX document. MFT is smart
enough to be used in a literate style, though obviously only for “weaving”.

The basic idea is the same as in Knuth’s WEB system: the METAFONT source
is interleaved with TEX code. It can be achieved due to a peculiar MFT con-
vention, in that a double percent sign has dual meanings: for METAFONT it
denotes just a usual comment, whereas for the MFT program it means that
the text appearing after a double percent is to be inserted verbatim into the
resulting TEX document.

Obviously, the MFT program can also be used for formatting METAPOST

sources. A typical fragment of the “literate documentation” of Antykwa Pół-
tawskiego looks as follows:

%% \---
%% In general, all objects are supposed to be drawn by the
%% {\bf endglyph} macro, i.e., all drawing operations are deferred.
%% The same concerns labelling, which necessitates redefinition
%% of labelling macros.
%% \-
%% Zak/lada si/e, /ze wszelkie operacje rysowania s/a ,,odraczane’’
%% i~realizowane dopiero przez makro {\bf endglyph}. To samo
%% dotyczy etykietowania, sk/ad konieczno/s/c przedefiniowania
%% makr etykietuj/acych.
%% \---
vardef pen_labels@#(text t) =
if project>2: % proofing level
forsuffixes $$=l,,r: forsuffixes $=t:
if known z$.$$: makelabel@#(str$.$$,z$.$$) fi;

endfor endfor
fi
enddef;

EuroTEX´99 Proceedings

136 Antykwa Półtawskiego: a parameterized outline font

In this case, the TEX code invokes the macro \- which typesets the bilingual
description of the METAPOST source. The ensuing METAFONT code is format-
ted by the MFT program. The result of the typesetting process is displayed in
figure 12.

Figure 12: An example of the formatting of the documentation of Antykwa Półtawskie-
go: the excerpt from the documentation corresponding to the source quoted above.

METAPOST, like METAFONT, is capable of generating hardcopy proofs. Ac-
tually, METAPOST proofs are eps files, therefore they can be used in a wider
context than METAFONT ones. In particular, they can be included into the for-
matted sources. We used this technique in the Antykwa Półtawskiego sources.
The examples of pages containing proof illustrations are shown in figure 13.

Postprocessing METAPOST output

The idea of postprocessing is rooted in the design principles of TEX. There
are several TEX-oriented utilities belonging to the standard TEX distribution:
POOLTYPE, DVITYPE, TFTOPL, PLTOTF, VFTOVP, and VPTOVF. In a sense, all of
them, as well as TEX drivers, can be regarded as postprocessors.

There are also METAFONT-oriented postprocessors: MFT, GFTYPE, GFTOPK,
and PKTYPE (TFTOPL and PLTOTF could also be included here).

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 137

Figure 13: The appearance of the documentation of Antykwa Półtawskiego: the META-
FONT source can contain references to proofs.

So far, there are no publicly released postprocessors for METAPOST, but sooner
or later they are bound to appear, the more so as the METAPOST system is, ac-
tually, based on postprocessing (METAPOST→ TEX→ DVI→ METAPOST).

Knuth insisted that his WEB system was independent of external systems: he
programmed all the above-mentioned utilities in Pascal. In the early ’eighties
such an attitude was plausible, but—in our humble opinion—it no longer is.
Nowadays, there exist stable, public domain systems for processing text and
binary files. Our experience shows that a lot can be achieved with the aid of
a simple text file processor, ([11]). A few years ago, it was adopted as a part
of the Gnu Project (GAWK) which guarantees both stability and maintenance
in the future. Since METAPOST generates well-formed 7-bit ASCII files, we
decided to use GAWK for postprocessing METAPOST output.

A Type 1 font consists of a binary file PFB (or its hexadecimal equivalent, PFA),
containing the description of glyph shapes, and should be accompanied by a
text metric file AFM.

In theory, GAWK might have written the hexadecimally encoded PFA files, but
there is another tool, better suited for this purpose, namely, the T1UTILS pack-
age ([13]). It contains both an assembler and a disassembler of Type 1 fonts.

EuroTEX´99 Proceedings

138 Antykwa Półtawskiego: a parameterized outline font

Obviously, we need the assembler first of all, but the disassembler also proves
useful from time to time.

Having METAPOST, GAWK and the Type 1 assembler, we are ready to accom-
plish the process of generating Type 1 fonts. It consists of three steps:

1. METAPOST compiles the font source and writes each glyph to a separate
eps file; additional information (e. g., hints, the name of a glyph, etc.) is
written by special commands and stored as PostScript comments after
the header of an eps file.

2. GAWK processes the resulting eps files along with a few auxiliary (con-
figuration) files and creates an AFM file and an input file for the Type 1
assembler.

3. The Type 1 assembler translates the intermediate result generated by GAWK
into a PFB file.

In order to use the resulting font in TEX, one more step is needed: the installa-
tion of a font.

The main part of the task of the installation of a PostScript font is generating
the relevant TEX font metric file—TFM. This can be performed by using, e. g.,
a popular program AFM2TFM by Tomas Rokicki. There are several packages
facilitating the installation of PostScript fonts for TEX, most notably fontinst
([12]). We decided, however, not to include any of them into our METAPOST-
to-Type 1 machinery.

The best tool for generating TFM files is of course METAFONT. At present,
the sources of Antykwa Półtawskiego are unuseable by METAFONT. We are
thinking about preparing a format acceptable to both METAFONT and META-
POST and adding one more step to the process of the generation of Type 1
fonts: generating a TFM file by METAFONT from the same source. It seems
that, in general, there are no fundamental obstacles, but, as wise people say,
don’t count your chickens before they are hatched.

Conclusions

The process of generating Type 1 fonts turned out to be fairly efficient. It is
comparable with the process of generating PK files. Therefore, it is possible
to generate the font variations on the fly, in accordance with our postulates
(see section Antykwa Półtawskiego). There remains the problem of the TEX-
METAPOST interface, but that must be a matter for the future.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 139

There is, however, a distressing side of the story: is it worthwile to put a lot of
energy into an obsolescent Type 1 format? What about Multiple Master, True-
Type, OpenType, and a multitude of other fonts?

Adobe PostScript is a stable worldwide standard. So far, Adobe have paid
attention to the backward compatibility of PostScript versions. We hope that
the situation will endure for a few years more and that Type 1 fonts will be
usable for a pretty long period.

From the point of view of TEX applications, the quality and the functionality
of Type 1 fonts is sufficient. The advantages that can be gained by using META-
POST seem at least equivalent, if not more valuable than the glorified features
offered by the above-mentioned font formats. For example, you may regard
the technique described in this paper as a TEX-oriented implementation (and,
in some respects, a generalization) of the most important features of Multiple
Master fonts.

Knuth says in his The METAFONTbook: It seems clear that further work with
METAFONT has the potential of producing typefaces of real beauty. This, nobody
can deny. We believe, however, that replacing the word “METAFONT” by
“METAPOST” offers even better prospects.

References

[1] Donald E. Knuth: The METAFONTbook, Addison-Wesley, seventh print-
ing, 1992.

[2] Andreı̆ Slepukhin, private communication, January, 1996.

[3] Richard J. Kinch: MetaFog: converting METAFONT shapes to contours, TUG-
boat 16 (3), pp. 233–243, 1995.

[4] Richard J. Kinch: Belleek: A call for METAFONT revival, in Proc. of 19th An-
nual TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 131–136.

[5] Taco Hoekwater: Generating Type 1 fonts from METAFONT sources, in Proc.
of 19th Annual TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 137–
147.

[6] John D. Hobby: http://cm.bell-labs.com/who/hobby/MetaPost.
html

[7] Adobe Type 1 Font Format, Addison-Wesley, 1990.

EuroTEX´99 Proceedings

140 Antykwa Półtawskiego: a parameterized outline font

[8] Bogusław Jackowski, Marek Ryćko: Labyrinth of METAFONT paths in out-
line, in Proc. of 8th European TEX Conference, September 26–30, 1994, Gdańsk,
Poland, pp. 18–32.

[9] Bogusław Jackowski: A METAFONT-EPS interface, in Proc. of 9th European
TEX Conference, September 4–8, 1995, Arnhem, The Netherlands, pp. 257–271.

[10] ROEX: a METAFONT macro package accomplishing operations on paths, com-
monly known as “removing overlaps” and “expanding strokes”,
ftp://ftp.GUST.org.pl/TeX/graphics/MF-PS/roex/

[11] Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger: The AWK Pro-
gramming Language, Addison-Wesley, 1988.

[12] Alan Jeffrey, Rowland McDonnell, Ulrik Vieth: Fontinst: the font installa-
tion package,
ftp://ftp.gust.org.pl/TeX/fonts/utilities/fontinst/

[13] I. Lee Hetherington: Utilities for assembling and disassembling Type 1 fonts,
ftp://ftp.gust.org.pl/TeX/fonts/utilities/t1utils.zip

Acknowledgements

The authors express their hearty thanks to the Polish TEX Users Group GUST
for partially sponsoring the work on Antykwa Półtawskiego and to Phil Taylor
for many valuable comments concerning the presentation of the work.

EuroTEX´99 Proceedings

Antykwa Półtawskiego: a parameterized outline font 141

Addresses

Bogusław Jackowski
BOP s. c.
ul. Piastowska 70
80-363 Gdańsk
Poland
E-Mail: B.Jackowski@GUST.org.pl

Janusz M. Nowacki
FOTO-ALFA
al. 23 Stycznia 56d
86-300 Grudziądz
Poland
E-Mail: J.Nowacki@gust.org.pl

Piotr Strzelczyk
BOP s. c.
ul. Piastowska 70
80-363 Gdańsk
Poland
E-Mail: piotrs@telbank.pl

EuroTEX´99 Proceedings

